Chin. Phys. Lett.  2014, Vol. 31 Issue (2): 027301    DOI: 10.1088/0256-307X/31/2/027301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Phonon-Limited Electron Mobility in Single-Layer MoS2
ZENG Lang1**, XIN Zheng1, CHEN Shao-Wen2, DU Gang1, KANG Jin-Feng1, LIU Xiao-Yan1**
1Key Laboratory of Microelectronic Devices and Circuits, Institute of Microelectronics, Peking University, Beijing 100871
2Yuanpei College, Peking University, Beijing 100871
Cite this article:   
ZENG Lang, XIN Zheng, CHEN Shao-Wen et al  2014 Chin. Phys. Lett. 31 027301
Download: PDF(609KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The dynamics of electron transport in single-layer MoS2 is simulated by employing the single particle Monte Carlo method. Acoustic phonon scattering, optical phonon scattering and Fr?hlich scattering are taken into account. It is found that the electron mobility decreases from 806 cm2/V?s for a transverse electrical field of 103 V/m to 426/112 cm2/V?s for a transverse electrical field of 105/107 V/m. Further detailed analysis on carrier dynamics reveals that the low field mobility is dominated by the acoustic phonon scattering while the role of optical phonon scattering is to relax the electron energy below the optical phonon energy by efficient energy relaxation through optical phonon emission. Only when the transverse electrical field is larger than 106 V/m, the mobility can be determined by the optical phonon scattering, leading to a strong mobility degradation.
Received: 14 August 2013      Published: 28 February 2014
PACS:  73.63.-b (Electronic transport in nanoscale materials and structures)  
  72.20.Fr (Low-field transport and mobility; piezoresistance)  
  72.20.Ht (High-field and nonlinear effects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/2/027301       OR      https://cpl.iphy.ac.cn/Y2014/V31/I2/027301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZENG Lang
XIN Zheng
CHEN Shao-Wen
DU Gang
KANG Jin-Feng
LIU Xiao-Yan
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Novoselov K, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S and Geim A 2005 Proc. Natl. Acad. Sci. U.S.A. 102 10451
[3] Ayari A, Cobas E, Ogundadegbe O and Fuhrer M 2007 J. Appl. Phys. 101 014507
[4] Ramakrishna Matte H, Gomathi A, Manna A, Late D, Datta R, Pati S and Rao C 2010 Angew. Chem. 122 4153
[5] Castellanos-Gomez A, Poot M, Steele G, van der Zant H, Agra?;t N and Rubio-Bollinger G 2012 Nanoscale Res. Lett. 7 233
[6] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[7] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C, Galli G and Wang F 2010 Nano Lett. 10 1271
[8] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
[9] Liu H, Neal A and Ye P 2012 ACS Nano 6 8563
[10] Liu H, Xu K, Zhang X and Ye P 2012 Appl. Phys. Lett. 100 152115
[11] Bao W, Cai X, Kim D, Sridhara K and Fuhrer M S 2013 Appl. Phys. Lett. 102 042104
[12] Qiu H, Pan L, Yao Z, Li J, Shi Y and Wang X 2012 Appl. Phys. Lett. 100 123104
[13] Das S, Chen H Y, Penumatcha A V and Appenzeller J 2013 Nano Lett. 13 100
[14] Kaasbjerg K, Thygesen K and Jacobsen K 2012 Phys. Rev. B 85 115317
[15] Li X, Mullen J T, Jin Z, Borysenko K M, Nardelli M B and Kim K W 2013 Phys. Rev. B 87 115418
[16] Jacoboni C and Reggiani L 1983 Rev. Mod. Phys. 55 645
[17] Zeng L, Liu X, Du G, Kang J and Han R 2009 IEEE Simulation Semiconductor Processes and Devices 2009. SISPAD'09. International Conference on (San Diego 9–11 September 2009) p 1
[18] Akturk A and Goldsman N 2008 J. Appl. Phys. 103 053702
[19] Jimenez D 2012 Appl. Phys. Lett. 101 243501
[20] Cheiwchanchamnangij T and Lambrecht W R 2012 Phys. Rev. B 85 205302
Related articles from Frontiers Journals
[1] Yeliang Wang. Orbit-Transfer Torque Switching[J]. Chin. Phys. Lett., 2022, 39(7): 027301
[2] Dong Pan, Huading Song, Shan Zhang, Lei Liu, Lianjun Wen, Dunyuan Liao, Ran Zhuo, Zhichuan Wang, Zitong Zhang, Shuai Yang, Jianghua Ying, Wentao Miao, Runan Shang, Hao Zhang, and Jianhua Zhao. In Situ Epitaxy of Pure Phase Ultra-Thin InAs-Al Nanowires for Quantum Devices[J]. Chin. Phys. Lett., 2022, 39(5): 027301
[3] Xing-Guo Ye, Peng-Fei Zhu, Wen-Zheng Xu, Nianze Shang, Kaihui Liu, and Zhi-Min Liao. Orbit-Transfer Torque Driven Field-Free Switching of Perpendicular Magnetization[J]. Chin. Phys. Lett., 2022, 39(3): 027301
[4] Yawen Guo, Wenqi Jiang, Xinru Wang, Fei Wan, Guanqing Wang, G. H. Zhou, Z. B. Siu, Mansoor B. A. Jalil, and Yuan Li. Effect of Geometrical Structure on Transport Properties of Silicene Nanoconstrictions[J]. Chin. Phys. Lett., 2021, 38(12): 027301
[5] Fan Gao and Yongqing Li. Influence of Device Geometry on Transport Properties of Topological Insulator Microflakes[J]. Chin. Phys. Lett., 2021, 38(11): 027301
[6] Linwei Zhou, Chen-Guang Wang, Zhixin Hu, Xianghua Kong, Zhong-Yi Lu, Hong Guo, and Wei Ji. Quasi-One-Dimensional Free-Electron-Like States Selected by Intermolecular Hydrogen Bonds at the Glycine/Cu(100) Interface[J]. Chin. Phys. Lett., 2020, 37(11): 027301
[7] Yi-Fan He , Lei-Xi Wang , Zhi-Xing Xiao , Ya-Wei Lv, Lei Liao , and Chang-Zhong Jiang . Normal Strain-Induced Tunneling Behavior Promotion in van der Waals Heterostructures[J]. Chin. Phys. Lett., 2020, 37(8): 027301
[8] Lu-Lu Yang, Jun-Jie Shi, Min Zhang, Zhong-Ming Wei, Yi-Min Ding, Meng Wu, Yong He, Yu-Lang Cen, Wen-Hui Guo, Shu-Hang Pan, Yao-Hui Zhu. The 2D InSe/WS$_2$ Heterostructure with Enhanced Optoelectronic Performance in the Visible Region[J]. Chin. Phys. Lett., 2019, 36(9): 027301
[9] Gufeng Fu, Fang Cheng. Anisotropic Transport on Monolayer and Multilayer Phosphorene in the Presence of an Electric Field[J]. Chin. Phys. Lett., 2019, 36(5): 027301
[10] Ze-Long He, Qiang Li, Kong-Fa Chen, Ji-Yuan Bai, Sui-Hu Dang. Fano Effect and Anti-Resonance Band in a Parallel-Coupled Double Quantum Dot System with Two Multi-Quantum Dot Chains[J]. Chin. Phys. Lett., 2018, 35(9): 027301
[11] Chu-Hong Yang, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Guang-Tong Liu, Chang-Li Yang, Li Lu. Transport Studies on GaAs/AlGaAs Two-Dimensional Electron Systems Modulated by Triangular Array of Antidots[J]. Chin. Phys. Lett., 2018, 35(7): 027301
[12] Hong-Jun Wang, Yuan-Yuan Zhu, Jing Zhou, Yong Liu. Electrical Conductivity of a Single Electro-deposited CoZn Nanowire[J]. Chin. Phys. Lett., 2018, 35(7): 027301
[13] Ze-Long He, Ji-Yuan Bai, Shu-Jiang Ye, Li Li, Chun-Xia Li. Quantum Switch and Efficient Spin-Filter in a System Consisting of Multiple Three-Quantum-Dot Rings[J]. Chin. Phys. Lett., 2017, 34(8): 027301
[14] Li-Ling Zhou, Xue-Yun Zhou, Rong Cheng, Cui-Ling Hou, Hong Shen. Local Heating in a Normal-Metal–Quantum-Dot–Superconductor System without Electric Voltage Bias[J]. Chin. Phys. Lett., 2017, 34(6): 027301
[15] Shi-Li Yan, Zhi-Jian Xie, Jian-Hao Chen, Takashi Taniguchi, Kenji Watanabe. Electrically Tunable Energy Bandgap in Dual-Gated Ultra-Thin Black Phosphorus Field Effect Transistors[J]. Chin. Phys. Lett., 2017, 34(4): 027301
Viewed
Full text


Abstract