CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Phonon-Limited Electron Mobility in Single-Layer MoS2 |
ZENG Lang1**, XIN Zheng1, CHEN Shao-Wen2, DU Gang1, KANG Jin-Feng1, LIU Xiao-Yan1** |
1Key Laboratory of Microelectronic Devices and Circuits, Institute of Microelectronics, Peking University, Beijing 100871 2Yuanpei College, Peking University, Beijing 100871
|
|
Cite this article: |
ZENG Lang, XIN Zheng, CHEN Shao-Wen et al 2014 Chin. Phys. Lett. 31 027301 |
|
|
Abstract The dynamics of electron transport in single-layer MoS2 is simulated by employing the single particle Monte Carlo method. Acoustic phonon scattering, optical phonon scattering and Fr?hlich scattering are taken into account. It is found that the electron mobility decreases from 806 cm2/V?s for a transverse electrical field of 103 V/m to 426/112 cm2/V?s for a transverse electrical field of 105/107 V/m. Further detailed analysis on carrier dynamics reveals that the low field mobility is dominated by the acoustic phonon scattering while the role of optical phonon scattering is to relax the electron energy below the optical phonon energy by efficient energy relaxation through optical phonon emission. Only when the transverse electrical field is larger than 106 V/m, the mobility can be determined by the optical phonon scattering, leading to a strong mobility degradation.
|
|
Received: 14 August 2013
Published: 28 February 2014
|
|
PACS: |
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
72.20.Fr
|
(Low-field transport and mobility; piezoresistance)
|
|
72.20.Ht
|
(High-field and nonlinear effects)
|
|
|
|
|
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [2] Novoselov K, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S and Geim A 2005 Proc. Natl. Acad. Sci. U.S.A. 102 10451 [3] Ayari A, Cobas E, Ogundadegbe O and Fuhrer M 2007 J. Appl. Phys. 101 014507 [4] Ramakrishna Matte H, Gomathi A, Manna A, Late D, Datta R, Pati S and Rao C 2010 Angew. Chem. 122 4153 [5] Castellanos-Gomez A, Poot M, Steele G, van der Zant H, Agra?;t N and Rubio-Bollinger G 2012 Nanoscale Res. Lett. 7 233 [6] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805 [7] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C, Galli G and Wang F 2010 Nano Lett. 10 1271 [8] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147 [9] Liu H, Neal A and Ye P 2012 ACS Nano 6 8563 [10] Liu H, Xu K, Zhang X and Ye P 2012 Appl. Phys. Lett. 100 152115 [11] Bao W, Cai X, Kim D, Sridhara K and Fuhrer M S 2013 Appl. Phys. Lett. 102 042104 [12] Qiu H, Pan L, Yao Z, Li J, Shi Y and Wang X 2012 Appl. Phys. Lett. 100 123104 [13] Das S, Chen H Y, Penumatcha A V and Appenzeller J 2013 Nano Lett. 13 100 [14] Kaasbjerg K, Thygesen K and Jacobsen K 2012 Phys. Rev. B 85 115317 [15] Li X, Mullen J T, Jin Z, Borysenko K M, Nardelli M B and Kim K W 2013 Phys. Rev. B 87 115418 [16] Jacoboni C and Reggiani L 1983 Rev. Mod. Phys. 55 645 [17] Zeng L, Liu X, Du G, Kang J and Han R 2009 IEEE Simulation Semiconductor Processes and Devices 2009. SISPAD'09. International Conference on (San Diego 9–11 September 2009) p 1 [18] Akturk A and Goldsman N 2008 J. Appl. Phys. 103 053702 [19] Jimenez D 2012 Appl. Phys. Lett. 101 243501 [20] Cheiwchanchamnangij T and Lambrecht W R 2012 Phys. Rev. B 85 205302 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|