Chin. Phys. Lett.  2014, Vol. 31 Issue (2): 020401    DOI: 10.1088/0256-307X/31/2/020401
GENERAL |
Quasi-Topological Cosmology from Emergence of Cosmic Space
Ahmad Sheykhi**
Physics Department and Biruni Observatory, College of Sciences, Shiraz University, Shiraz 71454, Iran Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), P. O. Box 55134-441, Maragha, Iran
Cite this article:   
Ahmad Sheykhi 2014 Chin. Phys. Lett. 31 020401
Download: PDF(412KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We show that one can always derive the Friedmann equation of an (n+1)-dimensional Friedmann–Robertson–Walker universe in cubic quasi-topological gravity, by determining the difference between the bulk and the apparent horizon degrees of freedom in a region of space. We also generalize the study to the higher-order quasi-topological gravity, and extract the corresponding Friedmann equation in this theory by using the same approach.
Received: 24 September 2013      Published: 28 February 2014
PACS:  04.20.Cv (Fundamental problems and general formalism)  
  04.50.-h (Higher-dimensional gravity and other theories of gravity)  
  04.70.Dy (Quantum aspects of black holes, evaporation, thermodynamics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/2/020401       OR      https://cpl.iphy.ac.cn/Y2014/V31/I2/020401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ahmad Sheykhi
[1] Lovelock D 1971 J. Math. Phys. (N. Y.) 12 498
[2] Oliva J and Ray S 2010 Classical Quantum Gravity 27 225002
[3] Myers R C and Robinson B 2010 J. High Energy Phys. 1008 067
[4] Dehghani M H, et al 2012 Phys. Rev. D 85 104009
[5] Myers R C, Paulos M F and Sinha A 2009 Phys. Rev. D 79 041901
[6] Buchel A, Myers R C, Paulos M F and Sinha A 2008 Phys. Lett. B 669 364
[7] Buchel A, Myers R C and Sinha A 2009 J. High Energy Phys. 03 084
[8] Sinha A and Myers R C 2009 Nucl. Phys. A 830 295C
[9] Myers R C, Paulos M F and Sinha A 2010 J. High Energy Phys. 08 035
[10] Brenna W G, Dehghani M H and Mann R B 2011 Phys. Rev. D 84 024012
[11] Dehghani M H and Vahidinia M H 2011 Phys. Rev. D 84 084044
[12] Brenna W G and Mann R B 2012 Phys. Rev. D 86 064035 (2012)
[13] Bazrafshan A, Dehghani M H and Ghanaatian M 2012 Phys. Rev. D 86 104043
[14] Kuang X M, Li W J, Ling Y 2010 J. High Energy Phys. 1012 069
[15] Kuang X M, Li W J, Ling Y 2012 Classical Quantum Gravity 29 085015
[16] Dehghani M H, Sheykhi A and Dehghani R 2013 Phys. Lett. B 724 11
[17] Sheykhi A, Dehghani M H and Dehghani R 2013 Gen. Relat. Gravit. (submitted)
[18] Padmanabhan T 2012 arXiv:1206.4916 [hep-th]
[19] Cai R G 2012 J. High Energy Phys. 1211 016
[20] Yang K, Liu Y X and Wang Y Q 2012 Phys. Rev. D 86 104013
[21] Sheykhi A, Dehghani M H and Hosseini S E 2013 J. Cosmol. Astropart. Phys. 2013 038
[22] Tu F Q and Chen Y X 2013 J. Cosmol. Astropart. Phys. 2013 024
[23] Ling Y and Pan W J 2013 arXiv:1304.0220 [hep-th]
[24] Sheykhi A 2013 Phys. Rev. D 87 061501(R)
[25] Sheykhi A, Dehghani M H and Hosseini S E 2013 Phys. Lett. B 726 23
[26] Yuan F F and Huang Y C 2013 arXiv:1304.7949 [gr-qc]
[27] Eune M and Kim W 2013 Phys. Rev. D 88 067303
[28] Ai W et al 2013 Phys. Rev. D 88 084019
[29] Tu F Q and Chen Y X 2013 arXiv:1306.0639 [hep-th]
[30] Sheykhi A, Wang B and Cai R G 2007 Nucl. Phys. B 779 1
[31] Sheykhi A, Wang B and Cai R G 2007 Phys. Rev. D 76 023515
[32] Sheykhi A 2009 J. Cosmol. Astropart. Phys. 2009 019
[33] Sheykhi A 2010 Classical Quantum Gravityt. 27 025007
[34] Sheykhi A 2010 Eur. Phys. J. C 69 265
[35] Cai R G and Kim S P 2005 J. High Energy Phys. 0502 050
Related articles from Frontiers Journals
[1] Chao-Guang Huang, Yong-Gui Li, Ning Zhu. The Three-Arm Michelson–Fabry–Pérot Detector for Gravitational Waves[J]. Chin. Phys. Lett., 2016, 33(08): 020401
[2] P. K. Sahoo, K. L. Mahanta, D. Goit, A. K. Sinha, S. S. Xulu, U. R. Das, A. Prasad, R. Prasad. Einstein Energy-Momentum Complex for a Phantom Black Hole Metric[J]. Chin. Phys. Lett., 2015, 32(02): 020401
[3] S. S. Zade. Dynamics of Apparent Horizons in (N+2)-Dimensional Space-Times[J]. Chin. Phys. Lett., 2012, 29(11): 020401
[4] Raj Bali, and Swati. LRS Bianchi Type-II Inflationary Universe with Massless Scalar Field and Time Varying Λ[J]. Chin. Phys. Lett., 2012, 29(8): 020401
[5] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 020401
[6] HUANG Chao-Guang,**,TIAN Yu,WU Xiao-Ning,XU Zhan,ZHOU Bin. New Geometry with All Killing Vectors Spanning the Poincaré Algebra[J]. Chin. Phys. Lett., 2012, 29(4): 020401
[7] NI Jun . Unification of General Relativity with Quantum Field Theory[J]. Chin. Phys. Lett., 2011, 28(11): 020401
[8] ZHU Yin . Measurement of the Speed of Gravity[J]. Chin. Phys. Lett., 2011, 28(7): 020401
[9] ZOU De-Cheng, YANG Zhan-Ying**, YUE Rui-Hong** . Thermodynamics of Slowly Rotating Charged Black Holes in Anti-de Sitter Einstein–Gauss–Bonnet Gravity[J]. Chin. Phys. Lett., 2011, 28(2): 020401
[10] HE Xiao-Gang, , MA Bo-Qiang,. Black Holes and Photons with Entropic Force[J]. Chin. Phys. Lett., 2010, 27(7): 020401
[11] LIU Liao. Cosmological Gravitational Wave in de Sitter Spacetime[J]. Chin. Phys. Lett., 2010, 27(2): 020401
[12] N. Ibotombi Singh, S. Kiranmla Chanu, S. Surendra Singh. Cosmological Models with Time Dependent G and Λ Coupling Scalars[J]. Chin. Phys. Lett., 2009, 26(6): 020401
[13] GONG Tian-Xi, WANG Yong-Jiu. Orbital Precession Effect in the Reissner-Nordström Field with a Global Monopole[J]. Chin. Phys. Lett., 2009, 26(3): 020401
[14] V. Enache, Camelia Popa, V. Paun, M. Agop,. Reissner--Nordström-de--Sitter-type Solution by a Gauge Theory of Gravity[J]. Chin. Phys. Lett., 2008, 25(10): 020401
[15] Zade S S, Patil K D, Mulkalwar P N. Non-Spherical Gravitational Collapse of Strange Quark Matter[J]. Chin. Phys. Lett., 2008, 25(5): 020401
Viewed
Full text


Abstract