GENERAL |
|
|
|
|
Quasi-Topological Cosmology from Emergence of Cosmic Space |
Ahmad Sheykhi** |
Physics Department and Biruni Observatory, College of Sciences, Shiraz University, Shiraz 71454, Iran Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), P. O. Box 55134-441, Maragha, Iran
|
|
Cite this article: |
Ahmad Sheykhi 2014 Chin. Phys. Lett. 31 020401 |
|
|
Abstract We show that one can always derive the Friedmann equation of an (n+1)-dimensional Friedmann–Robertson–Walker universe in cubic quasi-topological gravity, by determining the difference between the bulk and the apparent horizon degrees of freedom in a region of space. We also generalize the study to the higher-order quasi-topological gravity, and extract the corresponding Friedmann equation in this theory by using the same approach.
|
|
Received: 24 September 2013
Published: 28 February 2014
|
|
PACS: |
04.20.Cv
|
(Fundamental problems and general formalism)
|
|
04.50.-h
|
(Higher-dimensional gravity and other theories of gravity)
|
|
04.70.Dy
|
(Quantum aspects of black holes, evaporation, thermodynamics)
|
|
|
|
|
[1] Lovelock D 1971 J. Math. Phys. (N. Y.) 12 498 [2] Oliva J and Ray S 2010 Classical Quantum Gravity 27 225002 [3] Myers R C and Robinson B 2010 J. High Energy Phys. 1008 067 [4] Dehghani M H, et al 2012 Phys. Rev. D 85 104009 [5] Myers R C, Paulos M F and Sinha A 2009 Phys. Rev. D 79 041901 [6] Buchel A, Myers R C, Paulos M F and Sinha A 2008 Phys. Lett. B 669 364 [7] Buchel A, Myers R C and Sinha A 2009 J. High Energy Phys. 03 084 [8] Sinha A and Myers R C 2009 Nucl. Phys. A 830 295C [9] Myers R C, Paulos M F and Sinha A 2010 J. High Energy Phys. 08 035 [10] Brenna W G, Dehghani M H and Mann R B 2011 Phys. Rev. D 84 024012 [11] Dehghani M H and Vahidinia M H 2011 Phys. Rev. D 84 084044 [12] Brenna W G and Mann R B 2012 Phys. Rev. D 86 064035 (2012) [13] Bazrafshan A, Dehghani M H and Ghanaatian M 2012 Phys. Rev. D 86 104043 [14] Kuang X M, Li W J, Ling Y 2010 J. High Energy Phys. 1012 069 [15] Kuang X M, Li W J, Ling Y 2012 Classical Quantum Gravity 29 085015 [16] Dehghani M H, Sheykhi A and Dehghani R 2013 Phys. Lett. B 724 11 [17] Sheykhi A, Dehghani M H and Dehghani R 2013 Gen. Relat. Gravit. (submitted) [18] Padmanabhan T 2012 arXiv:1206.4916 [hep-th] [19] Cai R G 2012 J. High Energy Phys. 1211 016 [20] Yang K, Liu Y X and Wang Y Q 2012 Phys. Rev. D 86 104013 [21] Sheykhi A, Dehghani M H and Hosseini S E 2013 J. Cosmol. Astropart. Phys. 2013 038 [22] Tu F Q and Chen Y X 2013 J. Cosmol. Astropart. Phys. 2013 024 [23] Ling Y and Pan W J 2013 arXiv:1304.0220 [hep-th] [24] Sheykhi A 2013 Phys. Rev. D 87 061501(R) [25] Sheykhi A, Dehghani M H and Hosseini S E 2013 Phys. Lett. B 726 23 [26] Yuan F F and Huang Y C 2013 arXiv:1304.7949 [gr-qc] [27] Eune M and Kim W 2013 Phys. Rev. D 88 067303 [28] Ai W et al 2013 Phys. Rev. D 88 084019 [29] Tu F Q and Chen Y X 2013 arXiv:1306.0639 [hep-th] [30] Sheykhi A, Wang B and Cai R G 2007 Nucl. Phys. B 779 1 [31] Sheykhi A, Wang B and Cai R G 2007 Phys. Rev. D 76 023515 [32] Sheykhi A 2009 J. Cosmol. Astropart. Phys. 2009 019 [33] Sheykhi A 2010 Classical Quantum Gravityt. 27 025007 [34] Sheykhi A 2010 Eur. Phys. J. C 69 265 [35] Cai R G and Kim S P 2005 J. High Energy Phys. 0502 050 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|