Chin. Phys. Lett.  2014, Vol. 31 Issue (2): 020301    DOI: 10.1088/0256-307X/31/2/020301
GENERAL |
Quantum Speed Limit of a Photon under Non-Markovian Dynamics
XU Zhen-Yu, ZHU Shi-Qun**
School of Physical Science and Technology, Soochow University, Suzhou 215006
Cite this article:   
XU Zhen-Yu, ZHU Shi-Qun 2014 Chin. Phys. Lett. 31 020301
Download: PDF(571KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Quantum speed limit (QSL) time under noise has drawn considerable attention in real quantum computational processes. Though non-Markovian noise is found to be able to accelerate quantum evolution for a damped Jaynes–Cummings model, in this work we show that non-Markovianity will slow down the quantum evolution of an experimentally controllable photon system. As an application, QSL time of a photon can be controlled by regulating the relevant environment parameter properly, which nearly reaches the currently available photonic experimental technology.
Received: 04 October 2013      Published: 28 February 2014
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
  03.67.-a (Quantum information)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/2/020301       OR      https://cpl.iphy.ac.cn/Y2014/V31/I2/020301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Zhen-Yu
ZHU Shi-Qun
[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Levitin L B 1982 Int. J. Theor. Phys. 21 299
[3] Mandelstam L and Tamm I 1945 J. Phys. (USSR) 9 249
[4] Fleming G N 1973 Nuovo Cimento A 16 232
[5] Anandan J and Aharonov Y 1990 Phys. Rev. Lett. 65 1697
[6] Vaidman L 1992 Am. J. Phys. 60 182
[7] Margolus N and Levitin L B 1998 Physica D 120 188
[8] Levitin L B and Toffoli T 2009 Phys. Rev. Lett. 103 160502
[9] Yung M H 2006 Phys. Rev. A 74 030303(R)
[10] Caneva T, Murphy M, Calarco T, Fazio R, Montangero S, Giovannetti V and Santoro G E 2009 Phys. Rev. Lett. 103 240501
[11] Giovanetti V, Lloyd S and Maccone L 2011 Nat. Photon. 5 222
[12] Pfeifer P and Fr?hlich J 1995 Rev. Mod. Phys. 67 759
[13] Giovannetti V, Lloyd S and Maccone L 2003 Phys. Rev. A 67 052109
[14] Luo S, Wang Z and Zhang Q 2002 J. Phys. A 35 5935
[15] Luo S 2004 Physica D 189 1
[16] Luo S and Zhang Z 2005 Lett. Math. Phys. 71 1
[17] Jones P and Kok P 2010 Phys. Rev. A 82 022107
[18] Zwierz M 2012 Phys. Rev. A 86 016101
[19] Deffner S and Lutz E 2013 J. Phys. A: Math. Theor. 46 335302
[20] Breuer H P and Petruccione F 2007 The Theory of Open Quantum Systems (Oxford: Oxford University Press)
[21] Taddei M M, Escher B M, Davidovich L and de Matos Filho R L 2013 Phys. Rev. Lett. 110 050402
[22] del Campo A, Egusquiza I L, Plenio M B and Huelga S F 2013 Phys. Rev. Lett. 110 050403
[23] Deffner S and Lutz E 2013 Phys. Rev. Lett. 111 010402
[24] Zeilinger A 1999 Rev. Mod. Phys. 71 S288
[25] Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A and ?ukowski M 2012 Rev. Mod. Phys. 84 777
[26] Xu J S, Li C F, Gong M, Zou X B, Shi C H, Chen G and Guo G C 2010 Phys. Rev. Lett. 104 100502
[27] Liu B H, Li L, Huang Y F, Li C F, Guo G C, Laine E M, Breuer H P and Piilo J 2011 Nat. Phys. 7 931
[28] Tang J S, Li C F, Li Y L, Zou X B, Guo G C, Breuer H P, Laine E M and Piilo J 2012 Europhys. Lett. 97 10002
[29] Born M and Wolf E 1999 Principles of Optics (Cambridge: Cambridge University Press)
[30] Laine E M, Breuer H P, Piilo J, Li C F and Guo G C 2012 Phys. Rev. Lett. 108 210402
[31] Rivas á Huelga S F and Plenio M B 2010 Phys. Rev. Lett. 105 050403
[32] Breuer H P, Laine E M and Piilo J 2009 Phys. Rev. Lett. 103 210401
[33] Lu X M, Wang X and Sun C P 2010 Phys. Rev. A 82 042103
[34] Hou S C, Yi X X, Yu S X and Oh C H 2011 Phys. Rev. A 83 062115
[35] Luo S, Fu S and Song H 2012 Phys. Rev. A 86 044101
[36] Zeng H S, Tang N, Zheng Y P and Wang G Y 2011 Phys. Rev. A 84 032118
[37] Haikka P, Cresser J D and Maniscalco S 2011 Phys. Rev. A 83 012112
[38] Vacchini B, Smirne A, Laine E M, Piilo J and Breuer H P 2011 New J. Phys. 13 093004
[39] Chruscinski D, Kossakowski A and Rivas A 2011 Phys. Rev. A 83 052128
[40] Jiang M and Luo S 2013 Phys. Rev. A 88 034101
[41] Xu Z Y, Yang W L and Feng M 2010 Phys. Rev. A 81 044105
[42] He Z, Zou J, Li L and Shao B 2011 Phys. Rev. A 83 012108
[43] Julsgaard B, Sherson J, Cirac J I, Fiurasek J, Polzik E S 2004 Nature 432 482
[44] Cai Q Y 2004 Chin. Phys. Lett. 21 1189
[45] Lloyd S 2000 Nature 406 1047
Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 020301
[2] Chen Wang, Lu-Qin Wang, and Jie Ren. Managing Quantum Heat Transfer in a Nonequilibrium Qubit-Phonon Hybrid System with Coherent Phonon States[J]. Chin. Phys. Lett., 2021, 38(1): 020301
[3] Guobin Chen, Yang Hui, Junci Sun, Wenhao He, and Guanxiang Du. Rapid Measurement and Control of Nitrogen-Vacancy Center-Axial Orientation in Diamond Particles[J]. Chin. Phys. Lett., 2020, 37(11): 020301
[4] Liwei Duan, Yan-Zhi Wang, and Qing-Hu Chen. $\mathcal{PT}$ Symmetry of a Square-Wave Modulated Two-Level System[J]. Chin. Phys. Lett., 2020, 37(8): 020301
[5] Xiao-Lan Zong, Wei Song, Ming Yang, Zhuo-Liang Cao. Influence of Quantum Feedback Control on Excitation Energy Transfer *[J]. Chin. Phys. Lett., 0, (): 020301
[6] Xiao-Lan Zong, Wei Song, Ming Yang, Zhuo-Liang Cao. Influence of Quantum Feedback Control on Excitation Energy Transfer[J]. Chin. Phys. Lett., 2020, 37(6): 020301
[7] Zi Cai, Yizhen Huang, W. Vincent Liu. Imaginary Time Crystal of Thermal Quantum Matter[J]. Chin. Phys. Lett., 2020, 37(5): 020301
[8] Bing-Bing Chai, Jin-Liang Guo. Distillability of Sudden Death in Qutrit-Qutrit Systems under Global Mixed Noise[J]. Chin. Phys. Lett., 2019, 36(5): 020301
[9] Yang Yang, An-Min Wang, Lian-Zhen Cao, Jia-Qiang Zhao, Huai-Xin Lu. Frozen Quantum Coherence for a Central Two-Qubit System in a Spin-Chain Environment[J]. Chin. Phys. Lett., 2018, 35(8): 020301
[10] Jun Wen, Guan-Qiang Li. Preservation of Quantum Coherence for Gaussian-State Dynamics in a Non-Markovian Process[J]. Chin. Phys. Lett., 2018, 35(6): 020301
[11] Lei Du, Zhihao Xu, Chuanhao Yin, Liping Guo. Dynamical Evolution of an Effective Two-Level System with $\mathcal{PT}$ Symmetry[J]. Chin. Phys. Lett., 2018, 35(5): 020301
[12] Kang-Kang Ju, Cui-Xian Guo, Xiao-Yin Pan. Initial-Slip Term Effects on the Dissipation-Induced Transition of a Simple Harmonic Oscillator[J]. Chin. Phys. Lett., 2017, 34(1): 020301
[13] H. A. Zad. Total Pairwise Quantum Correlation and Entanglement in a Mixed-Three-Spin Ising-$XY$ Model with Added Dzyaloshinskii–Moriya Interaction under Decoherence[J]. Chin. Phys. Lett., 2016, 33(09): 020301
[14] Hong-Mei Zou, Mao-Fa Fang. Controlling Entropic Uncertainty in the Presence of Quantum Memory by Non-Markovian Effects and Atom–Cavity Couplings[J]. Chin. Phys. Lett., 2016, 33(07): 020301
[15] Da-Chuang Li, Xian-Ping Wang, Hu Li, Xiao-Man Li, Ming Yang, Zhuo-Liang Cao. Effects of Pure Dzyaloshinskii–Moriya Interaction with Magnetic Field on Entanglement in Intrinsic Decoherence[J]. Chin. Phys. Lett., 2016, 33(05): 020301
Viewed
Full text


Abstract