ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Observation of Spin Polarized Clock Transition in 87Sr Optical Lattice Clock |
WANG Qiang1,2**, LIN Yi-Ge1, LI Ye1,2, LIN Bai-Ke1,2, MENG Fei1, ZANG Er-Jun1, LI Tian-Chu1, FANG Zhan-Jun1 |
1National Institute of Metrology, Beijing 100013 2Department of Precision Instrument, Tsinghua University, Beijing 100084
|
|
Cite this article: |
WANG Qiang, LIN Yi-Ge, LI Ye et al 2014 Chin. Phys. Lett. 31 123201 |
|
|
Abstract We report our observation of the spin polarized 1S0→ 3P0 clock transition spectrum in an optical lattice clock based on fermionic 87Sr. The atoms are trapped and pre-cooled to about 2 μK with two stages of laser cooling at 461 nm and 689 nm, respectively. Then the atoms are loaded into an optical lattice formed by the interference of counter-propagating laser beams at 813 nm. An external cavity diode laser at 698 nm, which is stabilized to a high finesse cavity with a linewidth of about 5 Hz and a drift rate of less than 0.2 Hz/s, is used to excite the atoms to the 3P0 state. The π-polarized clock transition spectrum of resolvable mF states is obtained by applying a small bias magnetic field along the polarization axis of the probe beam. A spin polarized clock transition spectrum as narrow as 10 Hz with an 80 ms probe pulse is obtained.
|
|
Published: 12 January 2015
|
|
PACS: |
32.30.Jc
|
(Visible and ultraviolet spectra)
|
|
32.70.Jz
|
(Line shapes, widths, and shifts)
|
|
37.10.Gh
|
(Atom traps and guides)
|
|
37.10.Jk
|
(Atoms in optical lattices)
|
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
|
|
|
[1] Takamoto M et al 2005 Nature 435 321 [2] Borde C J 2005 Philos. Trans. R. Soc. A 363 2177 [3] Bloom B J et al 2014 Nature 506 71 [4] Rosenband T et al 2008 Science 319 1808 [5] Jiang Y Y et al 2011 Nat. Photon. 5 158 [6] Nicholson T L Martin M J et al 2012 Phys. Rev. Lett. 109 230801 [7] Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W and Ludlow A D 2013 Science 341 1215 [8] Middelmann T, Falke S, Lisdat C and Sterr U 2012 Phys. Rev. Lett. 109 263004 [9] Wang Q, Lin B K, Zhao Y, Li Y, Wang S K, Wang M M, Zang E J, Li T C and Fang Z J 2011 Chin. Phys. Lett. 28 033201 [10] Lin Y G, Wang Q, Li Y Lin B K, Wang S K, Meng F, Zhao Y, Cao J P Zang E J, Li T C and Fang Z J 2013 Chin. Phys. Lett. 30 014206 [11] Mukaiyama T, Katori H, Ido T, Li Y and Kuwata-Gonokami M 2003 Phys. Rev. Lett. 90 113002 [12] Takanoto M, Hong F L, Higashi R and Katori H 2005 Nature 435 321 [13] Boyd M M, Ludlow A D, Blatt S, Foreman S M, Ido T, Zelevinsky T and Ye J 2007 Phys. Rev. Lett. 98 083002 [14] Li Y, Lin Y G, Wang Q, Wang S K, Zhao Y, Meng F, Lin B K, Cao J P, Li T C, Fang Z J and Zang E J 2014 Chin. Phys. Lett. 31 024207 [15] Ma L S, Jungner P, Ye J and Hall J 1994 Opt. Lett. 19 1777 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|