FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Theoretical Investigation on THz Generation from Optical Rectification with Tilted-Pulse-Front Excitation |
DU Hai-Wei1**, YANG Nan2 |
1Terahertz Sensing and Imaging Team, Center for Advanced Photonics, RIKEN, Sendai 9800845, Japan 2Lab for Laser Plasma (Ministry of Education), and Physics and Astronomy Department, Shanghai Jiao Tong University, Shanghai 200240
|
|
Cite this article: |
DU Hai-Wei, YANG Nan 2014 Chin. Phys. Lett. 31 124201 |
|
|
Abstract The generation of THz pulses from stoichiometric LiNbO3 (sLN) crystal with tilted-pulse-front excitation is studied. In this scheme, THz absorption by sLN is obtained by numerical interpolation based on the measured data. It shows that THz generation can be enhanced by decreasing the temperature of sLN. The refractive indices of the laser from visible to mid-infrared regime are calculated from the Sellmeier dispersion equation. Then the THz generation law pumped by visible and mid-infrared laser pulses is calculated. It is found that the THz amplitude and energy increase in the near-infrared regime and then tread to a constant value when the wavelength of the laser pulses increases.
|
|
Published: 12 January 2015
|
|
PACS: |
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
07.57.Hm
|
(Infrared, submillimeter wave, microwave, and radiowave sources)
|
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
|
|
|
[1] Ferguson B and Zhang X C 2002 Nat. Mater. 1 26 [2] Chan W, Deibel J and Mittleman D 2007 Rep. Prog. Phys. 70 1325 [3] Ulbricht R, Hendry E, Shan J, Heinz T and Bonn M 2011 Rev. Mod. Phys. 83 543 [4] Zhang M, Pan R, Xiong W, He T and Shen J L 2012 Chin. Phys. Lett. 29 104208 [5] Zuo Z G, Ling F R, Ma D C, Wu L, Liu J S and Yao J Q 2013 Chin. Phys. B 22 107802 [6] Hoffmann M and Fulop J 2011 J. Phys. D 44 083001 [7] Dai J, Liu J and Zhang X C 2011 IEEE J. Sel. Top. Quantum Electron. 17 183 [8] Nahata A, Weling A and Heinz T 1996 Appl. Phys. Lett. 69 2321 [9] Hebling J, Almasi G, Kozma I and Kuhl J 2002 Opt. Express 10 1161 [10] Yeh K L, Hoffmann M, Hebling J and Nelson K 2007 Appl. Phys. Lett. 90 171121 [11] Hirori H, Doi A, Blanchard F and Tanaka K 2011 Appl. Phys. Lett. 98 091106 [12] Hebling J, Yeh K, Hoffmann M and Nelson K 2008 IEEE J. Sel. Top. Quantum Electron. 14 345 [13] Keller U 2003 Nature 424 831 [14] Popmintchev T, Chen M C, Popmintchev D, Arpin P, Brown S, Alisauskas S, Andriukaitis G, Balciunas T, Mucke O, Pugzlys A, Baltuska A, Shim B, Schrauth S, Gaeta A, Hernandez-Garcia C, Plaja L, Becker A, Jaron-Becker A, Murnane M and Kapteyn H 2012 Science 336 1287 [15] Yao J, Zeng B, Xu H, Li G, Chu W, Ni J, Zhang H, Chin S L, Cheng Y and Xu Z 2011 Phys. Rev. A 84 051802 [16] Clerici M, Peccianti M, Schmidt B, Caspani L, Shalaby M, Giguere M, Lotti A, Couairon A, Legare F, Ozaki T, Faccio D and Morandotti R 2013 Phys. Rev. Lett. 110 253901 [17] Hebling J, Stepanov A, Alamasi G, Bartal B and Kuhl J 2004 Appl. Phys. B 78 593 [18] Fulop J, Palfalvi L, Almasi G and Hebling J 2010 Opt. Express 18 12311 [19] Palfalvi L, Hebling J, Kuhl J, Peter A and Polgar K 2005 J. Appl. Phys. 97 123505 [20] Zelmon D, Small D and Jundt D 1997 J. Opt. Soc. Am. B 14 3319 [21] Huang S, Granados E, Huang W, Hong K, Zapata L and Kartner F 2013 Opt. Lett. 38 796 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|