NUCLEAR PHYSICS |
|
|
|
|
Ion Transportation Study for Thick Gas Electron Multipliers |
WANG Bin-Long1, LIU Qian1**, LIU Hong-Bang1,2, ZHOU Xiao-Kang1, CHEN Shi1, GE Dong-Sheng5, HUANG Wen-Qian5, XIE Yi-Gang1,4, ZHENG Yang-Heng1, DONG Yang5, ZHANG Qiang5, JIAO Xin-Da5, WANG Jing5, LI Min5, CHANG Jie5 |
1School of Physics, University of Chinese Academy of Sciences, Beijing 100049 2Institute of Physics, Guangxi University, Nanning 530004 3Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 4School of Physics and Technology, Wuhan University, Wuhan 430072 5Second Academy of China Aerospace Science and Industry Corporation, Beijing 100049
|
|
Cite this article: |
WANG Bin-Long, LIU Qian, LIU Hong-Bang et al 2014 Chin. Phys. Lett. 31 122901 |
|
|
Abstract Ion back flow(IBF) is defined as the ions that are generated during multiplication in a thick-gas-electron-multiplier (THGEM) detector flow along the electric field. In order to suppress the IBF effect, we study ion transportation for THGEMs with various high voltages and geometrical parameters. By measuring the currents of all the electrodes of the THGEMs, the effective gain and ion back flow ratio are calculated. The measurement and simulation results reveal that with a staggered triple THGEM configuration, ion back flow can be suppressed to 1% with a proper working high voltage. The gain of the staggered configuration is less than that of the aligned configuration by 5% under the same high voltage condition. The design and the results are presented.
|
|
Published: 12 January 2015
|
|
PACS: |
29.40.Cs
|
(Gas-filled counters: ionization chambers, proportional, and avalanche counters)
|
|
95.55.Ka
|
(X- and γ-ray telescopes and instrumentation)
|
|
|
|
|
[1] Braem A, Cataldo G De, Davenport M, Mauro A D, Franco A, Gallas A, Hoedlmoser H, Martinengo P et al 2005 Nucl. Instrum. Methods Phys. Res. Sect. A 553 187 [2] Mormann D, Breskin A, Chechik R and Bloch D 2004 Nucl. Instrum. Methods Phys. Res. Sect. A 516 315 [3] Chechik R, Breskin A, Shalem C and Mormann D 2004 Nucl. Instrum. Methods Phys. Res. Sect. A 535 303 [4] Breskin A, Alon R, Cortesi M, Chechik R, Miyamoto J, Dangendorf V, Maia J and Santos J M F Dos 2009 Nucl. Instrum. Methods Phys. Res. Sect. A 598 107 [5] Shalem C, Chechik R, Breskin A and Michaeli K 2006 Nucl. Instrum. Methods Phys. Res. Sect. A 558 475 [6] Alexeev M, Birsa R, Bradamante F, Bressan A, Chiosso M, Ciliberti P, Croci G and Colantoni M L 2010 Nucl. Instrum. Methods Phys. Res. Sect. A 617 396 [7] Triloki, Dutta B and Singh B K 2012 Nucl. Instrum. Methods Phys. Res. Sect. A 695 279 [8] Schultz G et al 1977 Rev. Phys. Appl. 12 67 [9] Liu H B et al 2012 J. Instrum. 7 C06001 [10] Anderson W, Azmoun B, Cherlin A, Chi C Y, Citron Z, Connors M, Dubey A, Durham J M et al 2011 Nucl. Instrum. Methods Phys. Res. Sect. A 646 35 [11] Bachmann S, Bressan A, Ropelewski L, Sauli F, Sharma A and Mormann D 1999 Nucl. Instrum. Methods Phys. Res. Sect. A 438 376 [12] Alexeev M, Birsa R, Bradamante F, Bressan A, Chiosso M, Ciliberti P, Torre S D, Dasgupta S et al 2013 J. Instrum. 8 P01021 [13] Ansys Inc. 2010 Ansys version 12. 0 electromagnetics, (Canonsburg USA) [14] Veenhof R 2009 J. Instrum. 4 P12017 [15] Schindler H, Biagi S F and Veenhof R 2010 Nucl. Instrum. Methods Phys. Res. Sect. A 624 78 [16] ?ahin ?, Tapan ?, ?zmutlu E N and Veenhof R 2010 J. Instrum. 5 P05002 [17] Zhou X K, Liu Q, Chen S et al 2014 Chin. Phys. Lett. 31 032901 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|