CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
LiF Thickness dependence of Electron Injection Models for Alq3/LiF/Al Cathode Structure |
LIAN Jia-Rong**, LUO Xi, CHEN Wei, SU Sheng-Xun, ZHAO Hong-Fei, LIU Si-Yang, XU Gui-wen, NIU Fang-Fang, ZENG Peng-Ju |
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060
|
|
Cite this article: |
LIAN Jia-Rong, LUO Xi, CHEN Wei et al 2014 Chin. Phys. Lett. 31 118501 |
|
|
Abstract We present the experimental evidences showing that three different electron injection models play roles in Alq3 based organic light-emitting diodes in sequence when the thickness of LiF interlayer is changed. It is found that the device with a 0.2 nm LiF layer displays the largest current with declined luminescence. However, the one with a 0.6 nm LiF layer displays the second largest current and the highest luminescence of all. Combining with the photoluminescent test results, three models, namely chemical reaction at ternary interface, dipole effect at binary interface and tunneling enhancement effect, are expected to play roles in sequence when the LiF thickness is increased from 0 nm to 4 nm.
|
|
Published: 28 November 2014
|
|
PACS: |
85.60.Jb
|
(Light-emitting devices)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
82.30.Lp
|
(Decomposition reactions (pyrolysis, dissociation, and fragmentation))
|
|
73.40.Gk
|
(Tunneling)
|
|
79.60.Jv
|
(Interfaces; heterostructures; nanostructures)
|
|
|
|
|
[1] Hung L S, Tang C W and Mason M G 1997 Appl. Phys. Lett. 70 152 [2] Zhang Z Q, Liu Y P, Dai Y F et al 2014 Chin. Phys. Lett. 31 046801 [3] Matsumura M and Jinde Y 1998 Appl. Phys. Lett. 73 2872 [4] Xie Z T, Zhang W H, Ding B F et al 2009 Appl. Phys. Lett. 94 063302 [5] Mori T, Fujikawa H, Tokito S and Taga Y 1998 Appl. Phys. Lett. 73 2763 [6] Ihm K, Kang T, Kim K, Hwang C et al 2003 Appl. Phys. Lett. 83 2949 [7] Zhao J M, Zhan Y Q, Zhang S T et al 2004 Appl. Phys. Lett. 84 5377 [8] Zhang S T, Ding X M, Zhao J M et al 2004 Appl. Phys. Lett. 84 425 [9] Shaheen S E, Jabbour G E, Morrell M M et al 1998 J. Appl. Phys. 84 2324 [10] Baldo M A and Forrest S R 2001 Phys. Rev. B 64 085201 [11] Mason M G, Tang C W, Hung L S et al 2001 J. Appl. Phys. 89 2756 [12] Grozea D, Turak A, Feng X D et al 2002 Appl. Phys. Lett. 81 3173 [13] Heil H, Steiger J, Karg S et al 2001 J. Appl. Phys. 89 420 [14] Lian J R, Niu F F, Liu Y W et al 2011 Curr. Appl. Phys. 11 295 [15] Hung L S, Zhang R Q, He P and Mason G 2002 J. Phys. D: Appl. Phys. 35 103 [16] Jabbour G E, Wang J F and Peyghambarian N 2002 Appl. Phys. Lett. 80 2026 [17] Hung L S, Tang C W, Mason M G et al 2001 Appl. Phys. Lett. 78 544 [18] Wang X Z, Xie Z T, Wang X J et al 2007 Appl. Surf. Sci. 253 3930 [19] Sugiyama K, Ito E, Seki K and Ishii H 1999 Adv. Mater. 11 605 [20] Zhu F R, Low B, Zhang K and Chua S 2001 Appl. Phys. Lett. 79 1205 [21] Yokoyama T, Yoshimura D and Iio E et al 2003 Jpn. J. Appl. Phys. 42 3666 [22] Sun Z Y, Ding X M, Ding B F et al 2013 Org. Electron. 14 511 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|