Chin. Phys. Lett.  2014, Vol. 31 Issue (11): 118501    DOI: 10.1088/0256-307X/31/11/118501
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
LiF Thickness dependence of Electron Injection Models for Alq3/LiF/Al Cathode Structure
LIAN Jia-Rong**, LUO Xi, CHEN Wei, SU Sheng-Xun, ZHAO Hong-Fei, LIU Si-Yang, XU Gui-wen, NIU Fang-Fang, ZENG Peng-Ju
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060
Cite this article:   
LIAN Jia-Rong, LUO Xi, CHEN Wei et al  2014 Chin. Phys. Lett. 31 118501
Download: PDF(721KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present the experimental evidences showing that three different electron injection models play roles in Alq3 based organic light-emitting diodes in sequence when the thickness of LiF interlayer is changed. It is found that the device with a 0.2 nm LiF layer displays the largest current with declined luminescence. However, the one with a 0.6 nm LiF layer displays the second largest current and the highest luminescence of all. Combining with the photoluminescent test results, three models, namely chemical reaction at ternary interface, dipole effect at binary interface and tunneling enhancement effect, are expected to play roles in sequence when the LiF thickness is increased from 0 nm to 4 nm.
Published: 28 November 2014
PACS:  85.60.Jb (Light-emitting devices)  
  73.20.At (Surface states, band structure, electron density of states)  
  82.30.Lp (Decomposition reactions (pyrolysis, dissociation, and fragmentation))  
  73.40.Gk (Tunneling)  
  79.60.Jv (Interfaces; heterostructures; nanostructures)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/11/118501       OR      https://cpl.iphy.ac.cn/Y2014/V31/I11/118501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIAN Jia-Rong
LUO Xi
CHEN Wei
SU Sheng-Xun
ZHAO Hong-Fei
LIU Si-Yang
XU Gui-wen
NIU Fang-Fang
ZENG Peng-Ju
[1] Hung L S, Tang C W and Mason M G 1997 Appl. Phys. Lett. 70 152
[2] Zhang Z Q, Liu Y P, Dai Y F et al 2014 Chin. Phys. Lett. 31 046801
[3] Matsumura M and Jinde Y 1998 Appl. Phys. Lett. 73 2872
[4] Xie Z T, Zhang W H, Ding B F et al 2009 Appl. Phys. Lett. 94 063302
[5] Mori T, Fujikawa H, Tokito S and Taga Y 1998 Appl. Phys. Lett. 73 2763
[6] Ihm K, Kang T, Kim K, Hwang C et al 2003 Appl. Phys. Lett. 83 2949
[7] Zhao J M, Zhan Y Q, Zhang S T et al 2004 Appl. Phys. Lett. 84 5377
[8] Zhang S T, Ding X M, Zhao J M et al 2004 Appl. Phys. Lett. 84 425
[9] Shaheen S E, Jabbour G E, Morrell M M et al 1998 J. Appl. Phys. 84 2324
[10] Baldo M A and Forrest S R 2001 Phys. Rev. B 64 085201
[11] Mason M G, Tang C W, Hung L S et al 2001 J. Appl. Phys. 89 2756
[12] Grozea D, Turak A, Feng X D et al 2002 Appl. Phys. Lett. 81 3173
[13] Heil H, Steiger J, Karg S et al 2001 J. Appl. Phys. 89 420
[14] Lian J R, Niu F F, Liu Y W et al 2011 Curr. Appl. Phys. 11 295
[15] Hung L S, Zhang R Q, He P and Mason G 2002 J. Phys. D: Appl. Phys. 35 103
[16] Jabbour G E, Wang J F and Peyghambarian N 2002 Appl. Phys. Lett. 80 2026
[17] Hung L S, Tang C W, Mason M G et al 2001 Appl. Phys. Lett. 78 544
[18] Wang X Z, Xie Z T, Wang X J et al 2007 Appl. Surf. Sci. 253 3930
[19] Sugiyama K, Ito E, Seki K and Ishii H 1999 Adv. Mater. 11 605
[20] Zhu F R, Low B, Zhang K and Chua S 2001 Appl. Phys. Lett. 79 1205
[21] Yokoyama T, Yoshimura D and Iio E et al 2003 Jpn. J. Appl. Phys. 42 3666
[22] Sun Z Y, Ding X M, Ding B F et al 2013 Org. Electron. 14 511
Related articles from Frontiers Journals
[1] Jingrui Ma, Haodong Tang, Xiangwei Qu, Guohong Xiang, Siqi Jia, Pai Liu, Kai Wang, and Xiao Wei Sun. A $dC/dV$ Measurement for Quantum-Dot Light-Emitting Diodes[J]. Chin. Phys. Lett., 2022, 39(12): 118501
[2] Jia-Ming Zeng, Xiao-Lan Wang, Chun-Lan Mo, Chang-Da Zheng, Jian-Li Zhang, Shuan Pan, Feng-Yi Jiang. Effect of Barrier Temperature on Photoelectric Properties of GaN-Based Yellow LEDs[J]. Chin. Phys. Lett., 2020, 37(3): 118501
[3] Ning-Ning Chen, Wan-Yi Tan, Dong-Yu Gao, Jian-Hua Zou, Jun-Zhe Liu, Jun-Biao Peng, Yong Cao, Xu-Hui Zhu. BiPh-$m$-BiDPO as a Hole-Blocking Layer for Organic Light-Emitting Diodes: Revealing Molecular Structure-Properties Relationship[J]. Chin. Phys. Lett., 2017, 34(7): 118501
[4] Xue-Hui Tao, Yong Yang. Theoretical Modeling of Luminous Efficacy for High-Power White Light-Emitting Diodes[J]. Chin. Phys. Lett., 2017, 34(3): 118501
[5] Feng Dai, Xue-Feng Zheng, Pei-Xian Li, Xiao-Hui Hou, Ying-Zhe Wang, Yan-Rong Cao, Xiao-Hua Ma, Yue Hao. The Transport Mechanisms of Reverse Leakage Current in Ultraviolet Light-Emitting Diodes[J]. Chin. Phys. Lett., 2016, 33(11): 118501
[6] Ning Zhang, Xue-Cheng Wei, Kun-Yi Lu, Liang-Sen Feng, Jie Yang, Bin Xue, Zhe Liu, Jin-Min Li, Jun-Xi Wang. Effect of Back Diffusion of Mg Dopants on Optoelectronic Properties of InGaN-Based Green Light-Emitting Diodes[J]. Chin. Phys. Lett., 2016, 33(11): 118501
[7] Qian-Qian Yu, Xu Zhang, Jing-Xuan Bi, Guan-Ting Liu, Qi-Wen Zhang, Xiao-Ming Wu, Yu-Lin Hua, Shou-Gen Yin. Efficiency of Blue Organic Light-emitting Diodes Enhanced by Employing an Exciton Feedback Layer[J]. Chin. Phys. Lett., 2016, 33(08): 118501
[8] Yuan-Yuan Hou, Jiang-Hong Li, Xiao-Xiang Ji, Ya-Feng Wu, Wei Fan, Igbari Femi. Highly Efficient and Stable Hybrid White Organic Light Emitting Diodes with Controllable Exciton Behavior by a Mixed Bipolar Interlayer[J]. Chin. Phys. Lett., 2016, 33(07): 118501
[9] Yao Xu, Yu-Ting Zhang, Zhi-Qi Kou, Shuang Cheng, Sheng-Li Bu. A Mixed Host Emitting Interlayer Based on CBP:TPBi in Green Phosphorescent Organic Light-Emitting Diodes[J]. Chin. Phys. Lett., 2016, 33(04): 118501
[10] Jun Sun, Min Xi, Zi-Sheng Su, Hai-Xiao He, Mi Tian, Hong-Yan Li, Hong-Ke Zhang, Tao Mao, Yu-Xiang Zhang. Highly Efficient Greenish-Yellow Phosphorescent Organic Light-Emitting Diodes Based on a Novel 2,3-Diphenylimidazo[1,2-a]Pyridine Iridium(III) Complex[J]. Chin. Phys. Lett., 2016, 33(03): 118501
[11] Shuang Cheng, Jian-Qi Shen, Zhi-Qi Kou, Xiao-Ping Wang. Influence of Blocking Interlayer in Blue Organic Light-Emitting Diodes with Different Thicknesses of Emitting Layer and Interlayer[J]. Chin. Phys. Lett., 2016, 33(02): 118501
[12] DING Lei, LI Huai-Kun, ZHANG Mai-Li, CHENG Jun, ZHANG Fang-Hui. High-Performance Hybrid White Organic Light-Emitting Diodes Utilizing a Mixed Interlayer as the Universal Carrier Switch[J]. Chin. Phys. Lett., 2015, 32(10): 118501
[13] ZHANG Hong-Mei, WANG Dan-Bei, WU Yuan-Wu, FANG Da, HUANG Wei. High-Efficiency Bottom-Emitting Organic Light-Emitting Diodes with Double Aluminum as Electrodes[J]. Chin. Phys. Lett., 2015, 32(10): 118501
[14] ZHANG Wen-Wen, WU Zhao-Xin, LIU Ying-Wen, DONG Jun, YAN Xue-Wen, HOU Xun. Thermal Analysis of Organic Light Emitting Diodes Based on Basic Heat Transfer Theory[J]. Chin. Phys. Lett., 2015, 32(08): 118501
[15] LIU Wei, LIU Guo-Hong, LIU Yong, LI Bao-Jun, ZHOU Xiang. Improvement of Performance of Organic Light-Emitting Diodes with Both a MoO3 Hole Injection Layer and a MoO3 Doped Hole Transport Layer[J]. Chin. Phys. Lett., 2015, 32(07): 118501
Viewed
Full text


Abstract