Chin. Phys. Lett.  2014, Vol. 31 Issue (11): 117801    DOI: 10.1088/0256-307X/31/11/117801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Engineering the Input Impedance of Electric Planar Metamaterials Analogue of Dipole Array
ZHU Yan-Wu1**, QIU Yang1, LIU Qi1, Domenic Belgiovane2
1School of Electro-Mechanical Engineering, Xidian University, Xian 710071
2The ElectroScience Laboratory, Department of Electrical and Computer Engineering, The Ohio State University, Columbus 43212, USA
Cite this article:   
ZHU Yan-Wu, QIU Yang, LIU Qi et al  2014 Chin. Phys. Lett. 31 117801
Download: PDF(483KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Since the demand of metamaterial (MM) based devices for practical applications is increased, the method with input impedance of dipole aims to produce fast results with reasonable accuracy for its design proposed. In this work, the unit of MM is equivalent to a dipole and then MM could be treated as a dipole array. An analysis is performed based on classical microwave dipole and numerical simulation by using the finite-difference time-domain for different MM configurations in the form of dipoles array. Additionally, a quality factor (Q-factor) based analysis is shown to yield simulation results which are in good agreement with the experiment. In essence, this shows that we could use antenna theory and numerical method to analyze MM thus opening the doors for a more efficient parameter optimization method.
Published: 28 November 2014
PACS:  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/11/117801       OR      https://cpl.iphy.ac.cn/Y2014/V31/I11/117801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHU Yan-Wu
QIU Yang
LIU Qi
Domenic Belgiovane
[1] Withayachumnankul W and Abbott D 2009 IEEE Photon. J. 1 99
[2] Xu Z Ch, Gao R M, Ding Ch F, Zhang Y T and Yao J Q 2014 Chin. Phys. Lett. 31 054205
[3] Du Q J, Liu J S, Wang K J, Yi X N and Yang H W 2011 Chin. Phys. Lett. 28 014201
[4] Wan X, Shen X P and Cui T J 2013 Opt. Express 21 17531
[5] Mo M M, Wen Q Y, Chen Zh, Yang Q H, Qu D H, Li Sh, Jing Y L and Zhang H W 2014 Chin. Phys. B 23 47803
[6] Lin B Q, Da X Y, Zhao Sh H, Meng W, Li F, Fang Y W and Wang J F 2014 Chin. Phys. B 23 67801
[7] Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L and Chen Zh Q 2014 Chin. Phys. B 23 17802
[8] Li Ch L, Guo J, Zhang P, Yu Q Q, Ma W T, Miao X G, Zhao Zh Y and Luan L 2014 Chin. Phys. Lett. 31 077801
[9] Wan X, Jiang W X, Ma H F and Cui T J 2014 Appl. Phys. Lett. 104 151601
[10] Sersic I, Frimmer M, Verhagen E and Koenderink A F 2009 Phys. Rev. Lett. 103 213902
[11] Lv Ch, Li Wei, Jiang X Y and Cao J Ch 2014 Chin. Phys. B 23 097802
[12] Heng H and Yang L 2014 Chin. Phys. Lett. 31 054201
[13] Feth N, KonigM, HusnikM, Stannigel K, Niegemann J, Busch K, Wegener M and Linden S 2010 Opt. Express 18 6545
[14] Singh R, Rockstuhl C and Zhang W L 2010 Appl. Phys. Lett. 97 241108
[15] Semouchkina E A, Semouchkin G B, Lanagan M and Randall C A 2005 IEEE Trans. Microwave Theory Tech. 53 1477
[16] Teixeira F L 2008 IEEE Trans. Antennas Propag. 56 2150
[17] Alu A and Engheta N 2008 Phys. Rev. Lett. 101 043901
[18] de Arquer, Garcia F, Volski V, Verellen N, Vandenbosch G A and Moshchalkov V V 2011 IEEE Trans. Antennas Propag. 59 3144
[19] Luebbers R, Uno L C T and Adachi S 1992 IEEE Trans. Antennas Propag. 40 1577
[20] Cummer S A, Popa B I and Hand T H 2008 IEEE Trans. Antennas Propag. 56 127
[21] Kraus J D and Marhefka R J 2002 Antennas: for All Applications (McGraw-Hill Higher Education)
[22] Yaghjian A D and Best S R 2005 IEEE Trans. Antennas Propag. 53 1298
Related articles from Frontiers Journals
[1] Bing Suo, Xiao Zhang, Xinyu Jiang, Feng Yan, Zhengzhi Luo, and Yujin Chen. Atomically Dispersed Ni Single-Atoms Anchored on N-Doped Graphene Aerogels for Highly Efficient Electromagnetic Wave Absorption[J]. Chin. Phys. Lett., 2022, 39(4): 117801
[2] Guanying Xing, Weixian Zhao, Run Hu, and Xiaobing Luo. Spatiotemporal Modulation of Thermal Emission from Thermal-Hysteresis Vanadium Dioxide for Multiplexing Thermotronics Functionalities[J]. Chin. Phys. Lett., 2021, 38(12): 117801
[3] Peng Chen, Xianglin Kong, Jianfei Han, Weihua Wang, Kui Han, Hongyu Ma, Lei Zhao, and Xiaopeng Shen. Wide-Angle Ultra-Broadband Metamaterial Absorber with Polarization-Insensitive Characteristics[J]. Chin. Phys. Lett., 2021, 38(2): 117801
[4] Xin Zhu, Feng Yan, Chunyan Li, Lihong Qi, Haoran Yuan, Yanfeng Liu, Chunling Zhu, and Yujin Chen. Nitrogen and Boron Co-Doped Carbon Nanotubes Embedded with Nickel Nanoparticles as Highly Efficient Electromagnetic Wave Absorbing Materials[J]. Chin. Phys. Lett., 2021, 38(1): 117801
[5] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 0, (): 117801
[6] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 2020, 37(6): 117801
[7] De-Ting Wang, Xian-Chao Wang, Xiao Zhang, Hao-Ran Yuan, Yu-Jin Chen. Tunable Dielectric Properties of Carbon Nanotube@Polypyrrole Core-Shell Hybrids by the Shell Thickness for Electromagnetic Wave Absorption[J]. Chin. Phys. Lett., 2020, 37(4): 117801
[8] Zong-Cheng Xu, Liang Wu, Ya-Ting Zhang, De-Gang Xu, Jian-Quan Yao. Photoexcited Blueshift and Redshift Switchable Metamaterial Absorber at Terahertz Frequencies[J]. Chin. Phys. Lett., 2019, 36(12): 117801
[9] Ju-Geng Li, Sen-Miao Yang, Xin Chen, Nai-Feng Zhuang, Qi-Biao Zhu, An-Hua Wu, Xian Lin, Guo-Hong Ma, Zuan-Ming Jin, Jian-Quan Yao. Temperature-Dependent Dielectric Characterization of Magneto-Optical Tb$_{3}$Sc$_{2}$Al$_{3}$O$_{12}$ Crystal Investigated by Terahertz Time-Domain Spectroscopy[J]. Chin. Phys. Lett., 2019, 36(4): 117801
[10] Li-Jun Yang, Yan Li. Pascal Realization by Comb-Spectral-Interferometry Based Refractometer[J]. Chin. Phys. Lett., 2018, 35(10): 117801
[11] Hong-Wei Guo, Shun-Cai Zhao, Xiao-Jing Wei, Xin Li. Negative Refraction Index Manipulated by a Displaced Squeezed Fock State in the Mesoscopic Dissipative Left-Handed Transmission Line[J]. Chin. Phys. Lett., 2017, 34(3): 117801
[12] Lan-Qing Zhou, Yan-Bang Zhang, Teng-Fei Yan, Ying Li, Guo-Zhi Jia, Huai-Zhe Xu, Xin-Hui Zhang. Third-Order Nonlinear Optical Response near the Plasmon Resonance Band of Cu$_{2-x}$Se Nanocrystals[J]. Chin. Phys. Lett., 2017, 34(1): 117801
[13] Xiao-Wei Han, Lei Hou, Lei Yang, Zhi-Quan Wang, Meng-Meng Zhao, Wei Shi. Optical-Electrical Characteristics and Carrier Dynamics of Semi-Insulation GaAs by Terahertz Spectroscopic Technique[J]. Chin. Phys. Lett., 2016, 33(12): 117801
[14] Wei-Na Cui, Hong-Xia Li, Min Sun, Yong-Yuan Zhu. Coupling of Cutoff Modes in a Chain of Nonlinear Metallic Nanorods[J]. Chin. Phys. Lett., 2016, 33(12): 117801
[15] Meng Zhao, Chun-Hua Xu, Wei-Jie Hu, Wen-Jun Wang, Li-Wei Guo, Xiao-Long Chen. Observation of Two-Photon Absorption and Nonlinear Refraction in AlN[J]. Chin. Phys. Lett., 2016, 33(10): 117801
Viewed
Full text


Abstract