CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Engineering the Input Impedance of Electric Planar Metamaterials Analogue of Dipole Array |
ZHU Yan-Wu1**, QIU Yang1, LIU Qi1, Domenic Belgiovane2 |
1School of Electro-Mechanical Engineering, Xidian University, Xian 710071 2The ElectroScience Laboratory, Department of Electrical and Computer Engineering, The Ohio State University, Columbus 43212, USA
|
|
Cite this article: |
ZHU Yan-Wu, QIU Yang, LIU Qi et al 2014 Chin. Phys. Lett. 31 117801 |
|
|
Abstract Since the demand of metamaterial (MM) based devices for practical applications is increased, the method with input impedance of dipole aims to produce fast results with reasonable accuracy for its design proposed. In this work, the unit of MM is equivalent to a dipole and then MM could be treated as a dipole array. An analysis is performed based on classical microwave dipole and numerical simulation by using the finite-difference time-domain for different MM configurations in the form of dipoles array. Additionally, a quality factor (Q-factor) based analysis is shown to yield simulation results which are in good agreement with the experiment. In essence, this shows that we could use antenna theory and numerical method to analyze MM thus opening the doors for a more efficient parameter optimization method.
|
|
Published: 28 November 2014
|
|
PACS: |
78.20.Ci
|
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
|
|
41.20.Jb
|
(Electromagnetic wave propagation; radiowave propagation)
|
|
|
|
|
[1] Withayachumnankul W and Abbott D 2009 IEEE Photon. J. 1 99 [2] Xu Z Ch, Gao R M, Ding Ch F, Zhang Y T and Yao J Q 2014 Chin. Phys. Lett. 31 054205 [3] Du Q J, Liu J S, Wang K J, Yi X N and Yang H W 2011 Chin. Phys. Lett. 28 014201 [4] Wan X, Shen X P and Cui T J 2013 Opt. Express 21 17531 [5] Mo M M, Wen Q Y, Chen Zh, Yang Q H, Qu D H, Li Sh, Jing Y L and Zhang H W 2014 Chin. Phys. B 23 47803 [6] Lin B Q, Da X Y, Zhao Sh H, Meng W, Li F, Fang Y W and Wang J F 2014 Chin. Phys. B 23 67801 [7] Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L and Chen Zh Q 2014 Chin. Phys. B 23 17802 [8] Li Ch L, Guo J, Zhang P, Yu Q Q, Ma W T, Miao X G, Zhao Zh Y and Luan L 2014 Chin. Phys. Lett. 31 077801 [9] Wan X, Jiang W X, Ma H F and Cui T J 2014 Appl. Phys. Lett. 104 151601 [10] Sersic I, Frimmer M, Verhagen E and Koenderink A F 2009 Phys. Rev. Lett. 103 213902 [11] Lv Ch, Li Wei, Jiang X Y and Cao J Ch 2014 Chin. Phys. B 23 097802 [12] Heng H and Yang L 2014 Chin. Phys. Lett. 31 054201 [13] Feth N, KonigM, HusnikM, Stannigel K, Niegemann J, Busch K, Wegener M and Linden S 2010 Opt. Express 18 6545 [14] Singh R, Rockstuhl C and Zhang W L 2010 Appl. Phys. Lett. 97 241108 [15] Semouchkina E A, Semouchkin G B, Lanagan M and Randall C A 2005 IEEE Trans. Microwave Theory Tech. 53 1477 [16] Teixeira F L 2008 IEEE Trans. Antennas Propag. 56 2150 [17] Alu A and Engheta N 2008 Phys. Rev. Lett. 101 043901 [18] de Arquer, Garcia F, Volski V, Verellen N, Vandenbosch G A and Moshchalkov V V 2011 IEEE Trans. Antennas Propag. 59 3144 [19] Luebbers R, Uno L C T and Adachi S 1992 IEEE Trans. Antennas Propag. 40 1577 [20] Cummer S A, Popa B I and Hand T H 2008 IEEE Trans. Antennas Propag. 56 127 [21] Kraus J D and Marhefka R J 2002 Antennas: for All Applications (McGraw-Hill Higher Education) [22] Yaghjian A D and Best S R 2005 IEEE Trans. Antennas Propag. 53 1298 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|