Chin. Phys. Lett.  2014, Vol. 31 Issue (11): 114205    DOI: 10.1088/0256-307X/31/11/114205
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Temperature Dependence of Emission Properties of Self-Assembled InGaN Quantum Dots
ZHAO Wan-Ru1, WENG Guo-En2, LIANG Ming-Ming2, LI Zeng-Cheng3, LIU Jian-Ping3, ZHANG Jiang-Yong1, ZHANG Bao-Ping1**
1Optoelectronics Engineering Research Center, Department of Electronic Engineering, Xiamen University, Xiamen 361005
2Department of Physics, Xiamen University, Xiamen 361005
3Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123
Cite this article:   
ZHAO Wan-Ru, WENG Guo-En, LIANG Ming-Ming et al  2014 Chin. Phys. Lett. 31 114205
Download: PDF(589KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Emission properties of self-assembled green-emitting InGaN quantum dots (QDs) grown on sapphire substrates by using metal organic chemical vapor deposition are studied by temperature-dependent photoluminescence (PL) measurements. As temperature increases (15–300 K), the PL peak energy shows an anomalous V-shaped (redshift–blueshift) variation instead of an S-shaped (redshift–blueshift–redshift) variation, as observed typically in green-emitting InGaN/GaN multi-quantum wells (MQWs). The PL full width at half maximum (FWHM) also shows a V-shaped (decrease–increase) variation. The temperature dependence of the PL peak energy and FWHM of QDs are well explained by a model similar to MQWs, in which carriers transferring in localized states play an important role, while the confinement energy of localized states in the QDs is significantly larger than that in MQWs. By analyzing the integrated PL intensity, the larger confinement energy of localized states in the QDs is estimated to be 105.9 meV, which is well explained by taking into account the band-gap shrinkage and carrier thermalization with temperature. It is also found that the nonradiative combination centers in QD samples are much less than those in QW samples with the same In content.
Published: 28 November 2014
PACS:  42.70.Nq (Other nonlinear optical materials; photorefractive and semiconductor materials)  
  42.70.Hj (Laser materials)  
  61.72.uj (III-V and II-VI semiconductors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/11/114205       OR      https://cpl.iphy.ac.cn/Y2014/V31/I11/114205
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHAO Wan-Ru
WENG Guo-En
LIANG Ming-Ming
LI Zeng-Cheng
LIU Jian-Ping
ZHANG Jiang-Yong
ZHANG Bao-Ping
[1] Zhang N et al 2013 Chin. Phys. Lett. 30 087101
[2] Weng G E et al 2011 Nano-Micro Lett. 3 200
[3] Mukai T et al 1999 Jpn. J. Appl. Phys. 38 3976
[4] Shen Y C et al 2007 Appl. Phys. Lett. 91 141101
[5] Zhang M, Bhattacharya P, Singh J and Hinckley J 2009 Appl. Phys. Lett. 95 201108
[6] Chichibu S, Sota T, Wada K and Nakamura S 1998 J. Vac. Sci. Technol. B 16 2204
[7] Kim M H, Schubert M F, Dai Q, Kim J K, Schubert E F, Piprek J and Park Y 2007 Appl. Phys. Lett. 91 183507
[8] Waltereit P, Brandt O, Trampert A, Grahn H T, Menniger J, Ramsteiner M, Reiche M and Ploog K H 2000 Nature 406 865
[9] Shapiro N A, Feick H, Hong W, Cich M, Armitage R and Weber E R 2003 J. Appl. Phys. 94 4520
[10] Petroff P M, Lorke A and Imamoglu A 2001 Phys. Today 54 46
[11] Zhang M, Bhattacharya P and Guo W 2010 Appl. Phys. Lett. 97 011103
[12] Xu T, Nikiforov A Y, France R, Thomidis C, Williams A and Moustakas T D 2007 Phys. Status Solidi A 204 2098
[13] Zhang M, Banerjee A, Lee C S, Hinckley J M and Bhattacharya P 2011 Appl. Phys. Lett. 98 221104
[14] Bhattacharya P, Banerjee A and Frost T 2013 Proc. SPIE 8640 86400J
[15] Frost T, Banerjee A, Sun K, Chuang S L and Bhattacharya P 2013 IEEE J. Quantum Electron. 49 923
[16] Damilano B, Grandjean N, Dalmasso S and Massies J 1999 Appl. Phys. Lett. 75 3751
[17] Ma J, Ji X L, Wang G H, Wei X C, Lu H X, Yi X Y, Duan R F, Wang J X, Zeng Y P, Li J M, Yang F H, Wang C and Zou G 2012 Appl. Phys. Lett. 101 131101
[18] Lv W B, Wang L, Wang L, Xing Y C, Yang D, Hao Z B and Luo Y 2014 Appl. Phys. Express 7 025203
[19] Li Z C, Liu J P, Feng M X, Zhou K, Zhang S M, Wang H, Li D Y, Zhang L Q, Sun Q, Jiang D S, Wang H B and Yang H 2013 J. Appl. Phys. 114 093105
[20] Cho Y H, Gainer G H, Fischer A J, Song J J, Keller S, Mishra U K and DenBaars S P 1998 Appl. Phys. Lett. 73 1370
[21] Liang M M, Weng G E, Zhang J Y, Cai X M, Lv X Q, Ying L Y and Zhang B P 2014 Chin. Phys. B 23 054211
[22] Grünewald M, Movaghar B, Pohlmann B and Würtz D 1985 Phys. Rev. B 32 8191
[23] Hao M, Zhang J, Zhang X H and Chua S 2002 Appl. Phys. Lett. 81 5129
[24] Ding L Z, Chen H, He M, Jiang Y, Lu T P, Deng Z, Chen F S, Yang F, Yang Q and Zhang Y L 2014 Chin. Phys. Lett. 31 076101
[25] Sun L, Weng G E, Liang M M, Ying L Y, Lv X Q, Zhang J Y and Zhang B P 2014 Physica E 60 166
[26] Lee J C, Wu Y F, Wang Y P and Nee T E 2008 J. Cryst. Growth 310 5143
[27] Walukiewicz W, Li S X, Wu J, Yu K M, Ager I I I J W, Haller E E, Lu H and Schaff W J 2004 J. Cryst. Growth 269 1
Related articles from Frontiers Journals
[1] Yue Lang, Zhaoyang Peng, and Zengxiu Zhao. Multiband Dynamics of Extended Harmonic Generation in Solids under Ultraviolet Injection[J]. Chin. Phys. Lett., 2022, 39(11): 114205
[2] N. F. Zulkipli, M. Batumalay, F. S. M. Samsamnun, M. B. H. Mahyuddin, E. Hanafi, T. F. T. M. N. Izam, M. I. M. A. Khudus, S. W. Harun. Nanosecond Pulses Generation with Samarium Oxide Film Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(7): 114205
[3] R. Z. R. R. Rosdin, M. T. Ahmad, A. R. Muhammad, Z. Jusoh, H. Arof, S. W. Harun. Nanosecond Pulse Generation with Silver Nanoparticle Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(5): 114205
[4] M. F. M. Rusdi, M. B. H. Mahyuddin, A. A. Latiff , H. Ahmad, S. W. Harun. Q-Switched Erbium-Doped Fiber Laser Using Cadmium Selenide Coated onto Side-Polished D-Shape Fiber as Saturable Absorber[J]. Chin. Phys. Lett., 2018, 35(10): 114205
[5] A. Nady, M. F. Baharom, A. A. Latiff, S. W. Harun. Mode-Locked Erbium-Doped Fiber Laser Using Vanadium Oxide as Saturable Absorber[J]. Chin. Phys. Lett., 2018, 35(4): 114205
[6] A. H. A. Rosol, H. A. Rahman, E. I. Ismail, N. Irawati, Z. Jusoh, A. A. Latiff, S. W. Harun. Cadmium Selenide Polymer Microfiber Saturable Absorber for Q-Switched Fiber Laser Applications[J]. Chin. Phys. Lett., 2017, 34(9): 114205
[7] Li-Bo Fang, Wei Pan, Si-Hua Zhong, Wen-Zhong Shen. Nonresonant and Resonant Nonlinear Absorption of CdSe-Based Nanoplatelets[J]. Chin. Phys. Lett., 2017, 34(9): 114205
[8] N. A. Aziz, A. A. Latiff, M. Q. Lokman, E. Hanafi, S. W. Harun. Zinc Oxide-Based Q-Switched Erbium-Doped Fiber Laser[J]. Chin. Phys. Lett., 2017, 34(4): 114205
[9] Lan-Qing Zhou, Yan-Bang Zhang, Teng-Fei Yan, Ying Li, Guo-Zhi Jia, Huai-Zhe Xu, Xin-Hui Zhang. Third-Order Nonlinear Optical Response near the Plasmon Resonance Band of Cu$_{2-x}$Se Nanocrystals[J]. Chin. Phys. Lett., 2017, 34(1): 114205
[10] Meng Zhao, Chun-Hua Xu, Wei-Jie Hu, Wen-Jun Wang, Li-Wei Guo, Xiao-Long Chen. Observation of Two-Photon Absorption and Nonlinear Refraction in AlN[J]. Chin. Phys. Lett., 2016, 33(10): 114205
[11] Demissie Gelmecha, Jun-Qing Li Merhawit Teklu. Pulse Propagation with Self-Phase Modulation in Nonlinear Chiral Fiber and Its Applications[J]. Chin. Phys. Lett., 2016, 33(09): 114205
[12] Meng-Meng Yue, Li-He Yan, Jin-Hai Si, Xun Hou. Influence of Self-Diffraction Effect on Femtosecond Time-Resolved Single-Shot Optical Kerr Measurements[J]. Chin. Phys. Lett., 2016, 33(04): 114205
[13] Xiu-Li Jia, Qing-Xin Meng, Xiao-Ou Wang, Zhong-Xiang Zhou. Simulation of High-Transmission Chiral Metamaterial with Impedance Matching to a Vacuum[J]. Chin. Phys. Lett., 2016, 33(01): 114205
[14] CUI Zheng, YAO Bao-Quan, DUAN Xiao-Ming, BAI Shuang, LI Jiang, YUAN Jin-He, DAI Tong-Yu, LI Chao-Yu, PAN Yu-Bai. Cr2+:ZnS Saturable Absorber Passively Q-Switched Ho:LuVO4 Laser[J]. Chin. Phys. Lett., 2015, 32(10): 114205
[15] CUI Zheng, YAO Bao-Quan, DUAN Xiao-Ming, LI Jiang, BAI Shuang, LI Xiao-Lei, ZHANG Ye, YUAN Jin-He, DAI Tong-Yu, JU You-Lun, LI Chao-Yu, PAN Yu-Bai. Experimental Study on a Passively Q-Switched Ho:YLF Laser with Polycrystalline Cr2+:ZnS as a Saturable Absorber[J]. Chin. Phys. Lett., 2015, 32(08): 114205
Viewed
Full text


Abstract