FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Temperature Dependence of Emission Properties of Self-Assembled InGaN Quantum Dots |
ZHAO Wan-Ru1, WENG Guo-En2, LIANG Ming-Ming2, LI Zeng-Cheng3, LIU Jian-Ping3, ZHANG Jiang-Yong1, ZHANG Bao-Ping1** |
1Optoelectronics Engineering Research Center, Department of Electronic Engineering, Xiamen University, Xiamen 361005 2Department of Physics, Xiamen University, Xiamen 361005 3Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123
|
|
Cite this article: |
ZHAO Wan-Ru, WENG Guo-En, LIANG Ming-Ming et al 2014 Chin. Phys. Lett. 31 114205 |
|
|
Abstract Emission properties of self-assembled green-emitting InGaN quantum dots (QDs) grown on sapphire substrates by using metal organic chemical vapor deposition are studied by temperature-dependent photoluminescence (PL) measurements. As temperature increases (15–300 K), the PL peak energy shows an anomalous V-shaped (redshift–blueshift) variation instead of an S-shaped (redshift–blueshift–redshift) variation, as observed typically in green-emitting InGaN/GaN multi-quantum wells (MQWs). The PL full width at half maximum (FWHM) also shows a V-shaped (decrease–increase) variation. The temperature dependence of the PL peak energy and FWHM of QDs are well explained by a model similar to MQWs, in which carriers transferring in localized states play an important role, while the confinement energy of localized states in the QDs is significantly larger than that in MQWs. By analyzing the integrated PL intensity, the larger confinement energy of localized states in the QDs is estimated to be 105.9 meV, which is well explained by taking into account the band-gap shrinkage and carrier thermalization with temperature. It is also found that the nonradiative combination centers in QD samples are much less than those in QW samples with the same In content.
|
|
Published: 28 November 2014
|
|
PACS: |
42.70.Nq
|
(Other nonlinear optical materials; photorefractive and semiconductor materials)
|
|
42.70.Hj
|
(Laser materials)
|
|
61.72.uj
|
(III-V and II-VI semiconductors)
|
|
|
|
|
[1] Zhang N et al 2013 Chin. Phys. Lett. 30 087101 [2] Weng G E et al 2011 Nano-Micro Lett. 3 200 [3] Mukai T et al 1999 Jpn. J. Appl. Phys. 38 3976 [4] Shen Y C et al 2007 Appl. Phys. Lett. 91 141101 [5] Zhang M, Bhattacharya P, Singh J and Hinckley J 2009 Appl. Phys. Lett. 95 201108 [6] Chichibu S, Sota T, Wada K and Nakamura S 1998 J. Vac. Sci. Technol. B 16 2204 [7] Kim M H, Schubert M F, Dai Q, Kim J K, Schubert E F, Piprek J and Park Y 2007 Appl. Phys. Lett. 91 183507 [8] Waltereit P, Brandt O, Trampert A, Grahn H T, Menniger J, Ramsteiner M, Reiche M and Ploog K H 2000 Nature 406 865 [9] Shapiro N A, Feick H, Hong W, Cich M, Armitage R and Weber E R 2003 J. Appl. Phys. 94 4520 [10] Petroff P M, Lorke A and Imamoglu A 2001 Phys. Today 54 46 [11] Zhang M, Bhattacharya P and Guo W 2010 Appl. Phys. Lett. 97 011103 [12] Xu T, Nikiforov A Y, France R, Thomidis C, Williams A and Moustakas T D 2007 Phys. Status Solidi A 204 2098 [13] Zhang M, Banerjee A, Lee C S, Hinckley J M and Bhattacharya P 2011 Appl. Phys. Lett. 98 221104 [14] Bhattacharya P, Banerjee A and Frost T 2013 Proc. SPIE 8640 86400J [15] Frost T, Banerjee A, Sun K, Chuang S L and Bhattacharya P 2013 IEEE J. Quantum Electron. 49 923 [16] Damilano B, Grandjean N, Dalmasso S and Massies J 1999 Appl. Phys. Lett. 75 3751 [17] Ma J, Ji X L, Wang G H, Wei X C, Lu H X, Yi X Y, Duan R F, Wang J X, Zeng Y P, Li J M, Yang F H, Wang C and Zou G 2012 Appl. Phys. Lett. 101 131101 [18] Lv W B, Wang L, Wang L, Xing Y C, Yang D, Hao Z B and Luo Y 2014 Appl. Phys. Express 7 025203 [19] Li Z C, Liu J P, Feng M X, Zhou K, Zhang S M, Wang H, Li D Y, Zhang L Q, Sun Q, Jiang D S, Wang H B and Yang H 2013 J. Appl. Phys. 114 093105 [20] Cho Y H, Gainer G H, Fischer A J, Song J J, Keller S, Mishra U K and DenBaars S P 1998 Appl. Phys. Lett. 73 1370 [21] Liang M M, Weng G E, Zhang J Y, Cai X M, Lv X Q, Ying L Y and Zhang B P 2014 Chin. Phys. B 23 054211 [22] Grünewald M, Movaghar B, Pohlmann B and Würtz D 1985 Phys. Rev. B 32 8191 [23] Hao M, Zhang J, Zhang X H and Chua S 2002 Appl. Phys. Lett. 81 5129 [24] Ding L Z, Chen H, He M, Jiang Y, Lu T P, Deng Z, Chen F S, Yang F, Yang Q and Zhang Y L 2014 Chin. Phys. Lett. 31 076101 [25] Sun L, Weng G E, Liang M M, Ying L Y, Lv X Q, Zhang J Y and Zhang B P 2014 Physica E 60 166 [26] Lee J C, Wu Y F, Wang Y P and Nee T E 2008 J. Cryst. Growth 310 5143 [27] Walukiewicz W, Li S X, Wu J, Yu K M, Ager I I I J W, Haller E E, Lu H and Schaff W J 2004 J. Cryst. Growth 269 1 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|