GENERAL |
|
|
|
|
Nematic Ferromagnetism on the Lieb Lattice |
CHEN Ke-Ji1,2, ZHANG Wei1,2** |
1Department of Physics, Renmin University of China, Beijing 100872 2Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872
|
|
Cite this article: |
CHEN Ke-Ji, ZHANG Wei 2014 Chin. Phys. Lett. 31 110303 |
|
|
Abstract We discuss the properties of ferromagnetic orders on the Lieb lattice and show that a symmetry protected quadratic-flat band crossing point will dramatically affect the magnetic ordering. In the presence of a weak on-site repulsive interaction, the ground state is a nematic ferromagnetic order with simultaneously broken time-reversal and rotational symmetries. When the interaction strength increases, the rotational symmetry will restore at a critical value, and the system enters a conventional ferromagnetic regime. The mean-field transition temperatures for both the nematic and conventional ferromagnetic phases are in the order of interaction. This observation suggests that these magnetic orders have the potential to be realized and detected in cold atomic systems within realistic experimental conditions.
|
|
Published: 28 November 2014
|
|
PACS: |
03.75.Ss
|
(Degenerate Fermi gases)
|
|
37.10.Jk
|
(Atoms in optical lattices)
|
|
05.30.Fk
|
(Fermion systems and electron gas)
|
|
|
|
|
[1] Heisenberg W 1928 Z. Phys. 49 619 [2] Thouless D J 1965 Proc. Phys. Soc. London 86 893 [3] Nagaoka Y 1966 Phys. Rev. 147 392 [4] Lieb E H 1989 Phys. Rev. Lett. 62 1201 [5] Mielke A 1991 J. Phys. A 24 L73 [6] Mielke A 1991 J. Phys. A 24 3311 [7] Mielke A 1992 J. Phys. A 25 4335 [8] Tasaki H 1992 Phys. Rev. Lett. 69 1608 [9] Tasaki H 1995 Phys. Rev. Lett. 75 4678 [10] Tanaka A and Tasaki H 2007 Phys. Rev. Lett. 98 116402 [11] Tasaki H 1996 J. Stat. Phys. 84 535 [12] Arita R et al 1998 Phys. Rev. B 57 R6854 [13] Tamura H, Shiraishi K, Kimura T and Takayanagi H 2002 Phys. Rev. B 65 085324 [14] Suwa Y, Arita R, Kuroki K and Aoki H 2003 Phys. Rev. B 68 174419 [15] Wang L, Dai X, Chen S and Xie X C 2008 Phys. Rev. A 78 023603 [16] Noda K, Koga A, Kawakami N and Pruschke T 2009 Phys. Rev. A 80 063622 [17] Zhang S, Hung H H and Wu C 2010 Phys. Rev. A 82 053618 [18] Goldman N, Urban D F and Bercioux D 2011 Phys. Rev. A 83 063601 [19] Jaksch D, Bruder C, Cirac J I, Gardiner C W and Zoller P 1998 Phys. Rev. Lett. 81 3108 [20] Jo G B et al 2009 Science 325 1521 [21] Sun K, Yao H, Fradkin E and Kivelson S A 2009 Phys. Rev. Lett. 103 046811 [22] Wu C J, Ian M S and Zhou X F 2011 Chin. Phys. Lett. 28 097102 [23] Zhao A and Shen S Q 2012 Phys. Rev. B 85 085209 [24] Chakravarty S, Halperin B I and Nelson D R 1988 Phys. Rev. Lett. 60 1057 [25] Stoof H T C, Gubbels K B and Dickerscheid D B M 2009 Ultracold Quantum Fields (New York: Springer-Verlag) [26] Gemelke N, Zhang X, Hung C L and Chin C 2009 Nature 460 995 [27] Bakr W S et al 2010 Science 329 547 [28] Ernst P T et al 2010 Nat. Phys. 6 56 [29] Stewart J T, Gaebler J P and Jin D S 2008 Nature 454 744 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|