Chin. Phys. Lett.  2014, Vol. 31 Issue (11): 110303    DOI: 10.1088/0256-307X/31/11/110303
GENERAL |
Nematic Ferromagnetism on the Lieb Lattice
CHEN Ke-Ji1,2, ZHANG Wei1,2**
1Department of Physics, Renmin University of China, Beijing 100872
2Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872
Cite this article:   
CHEN Ke-Ji, ZHANG Wei 2014 Chin. Phys. Lett. 31 110303
Download: PDF(754KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We discuss the properties of ferromagnetic orders on the Lieb lattice and show that a symmetry protected quadratic-flat band crossing point will dramatically affect the magnetic ordering. In the presence of a weak on-site repulsive interaction, the ground state is a nematic ferromagnetic order with simultaneously broken time-reversal and rotational symmetries. When the interaction strength increases, the rotational symmetry will restore at a critical value, and the system enters a conventional ferromagnetic regime. The mean-field transition temperatures for both the nematic and conventional ferromagnetic phases are in the order of interaction. This observation suggests that these magnetic orders have the potential to be realized and detected in cold atomic systems within realistic experimental conditions.
Published: 28 November 2014
PACS:  03.75.Ss (Degenerate Fermi gases)  
  37.10.Jk (Atoms in optical lattices)  
  05.30.Fk (Fermion systems and electron gas)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/11/110303       OR      https://cpl.iphy.ac.cn/Y2014/V31/I11/110303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Ke-Ji
ZHANG Wei
[1] Heisenberg W 1928 Z. Phys. 49 619
[2] Thouless D J 1965 Proc. Phys. Soc. London 86 893
[3] Nagaoka Y 1966 Phys. Rev. 147 392
[4] Lieb E H 1989 Phys. Rev. Lett. 62 1201
[5] Mielke A 1991 J. Phys. A 24 L73
[6] Mielke A 1991 J. Phys. A 24 3311
[7] Mielke A 1992 J. Phys. A 25 4335
[8] Tasaki H 1992 Phys. Rev. Lett. 69 1608
[9] Tasaki H 1995 Phys. Rev. Lett. 75 4678
[10] Tanaka A and Tasaki H 2007 Phys. Rev. Lett. 98 116402
[11] Tasaki H 1996 J. Stat. Phys. 84 535
[12] Arita R et al 1998 Phys. Rev. B 57 R6854
[13] Tamura H, Shiraishi K, Kimura T and Takayanagi H 2002 Phys. Rev. B 65 085324
[14] Suwa Y, Arita R, Kuroki K and Aoki H 2003 Phys. Rev. B 68 174419
[15] Wang L, Dai X, Chen S and Xie X C 2008 Phys. Rev. A 78 023603
[16] Noda K, Koga A, Kawakami N and Pruschke T 2009 Phys. Rev. A 80 063622
[17] Zhang S, Hung H H and Wu C 2010 Phys. Rev. A 82 053618
[18] Goldman N, Urban D F and Bercioux D 2011 Phys. Rev. A 83 063601
[19] Jaksch D, Bruder C, Cirac J I, Gardiner C W and Zoller P 1998 Phys. Rev. Lett. 81 3108
[20] Jo G B et al 2009 Science 325 1521
[21] Sun K, Yao H, Fradkin E and Kivelson S A 2009 Phys. Rev. Lett. 103 046811
[22] Wu C J, Ian M S and Zhou X F 2011 Chin. Phys. Lett. 28 097102
[23] Zhao A and Shen S Q 2012 Phys. Rev. B 85 085209
[24] Chakravarty S, Halperin B I and Nelson D R 1988 Phys. Rev. Lett. 60 1057
[25] Stoof H T C, Gubbels K B and Dickerscheid D B M 2009 Ultracold Quantum Fields (New York: Springer-Verlag)
[26] Gemelke N, Zhang X, Hung C L and Chin C 2009 Nature 460 995
[27] Bakr W S et al 2010 Science 329 547
[28] Ernst P T et al 2010 Nat. Phys. 6 56
[29] Stewart J T, Gaebler J P and Jin D S 2008 Nature 454 744
Related articles from Frontiers Journals
[1] Xiang-Chuan Yan, Da-Li Sun, Lu Wang, Jing Min, Shi-Guo Peng, and Kai-Jun Jiang. Production of Degenerate Fermi Gases of $^6$Li Atoms in an Optical Dipole Trap[J]. Chin. Phys. Lett., 2021, 38(5): 110303
[2] Jing-Bo Wang, Jian-Song Pan, Xiaoling Cui, and Wei Yi. Quantum Droplets in a Mixture of Bose–Fermi Superfluids[J]. Chin. Phys. Lett., 2020, 37(7): 110303
[3] Qijin Chen, Jibiao Wang, Lin Sun, Yi Yu. Unusual Destruction and Enhancement of Superfluidity of Atomic Fermi Gases by Population Imbalance in a One-Dimensional Optical Lattice[J]. Chin. Phys. Lett., 2020, 37(5): 110303
[4] Xue-Jing Feng, Lan Yin. Phase Diagram of a Spin-Orbit Coupled Dipolar Fermi Gas at T=0K[J]. Chin. Phys. Lett., 2020, 37(2): 110303
[5] Ya-Dong Song, Xiao-Ming Cai. Properties of One-Dimensional Highly Polarized Fermi Gases[J]. Chin. Phys. Lett., 2018, 35(11): 110303
[6] Yi-Cong Yu, Xi-Wen Guan. A Unified Approach to the Thermodynamics and Quantum Scaling Functions of One-Dimensional Strongly Attractive $SU(w)$ Fermi Gases[J]. Chin. Phys. Lett., 2017, 34(7): 110303
[7] Xiao-Xia Ruan, Hao Gong, Yuan-Mei Shi , Hong-Shi Zong. Specific Heat of a Unitary Fermi Gas Including Particle-Hole Fluctuation[J]. Chin. Phys. Lett., 2016, 33(11): 110303
[8] Bei-Bing Huang. A Realistic Model for Observing Spin-Balanced Fulde–Ferrell Superfluid in Honeycomb Lattices[J]. Chin. Phys. Lett., 2016, 33(08): 110303
[9] DENG Shu-Jin, DIAO Peng-Peng, YU Qian-Li, WU Hai-Bin. All-Optical Production of Quantum Degeneracy and Molecular Bose–Einstein Condensation of 6Li[J]. Chin. Phys. Lett., 2015, 32(5): 110303
[10] LUAN Tian, JIA Tao, CHEN Xu-Zong, MA Zhao-Yuan. Optimized Degenerate Bose–Fermi Mixture in Microgravity: DSMC Simulation of Sympathetic Cooling[J]. Chin. Phys. Lett., 2014, 31(04): 110303
[11] RUAN Xiao-Xia, GONG Hao, DU Long, JIANG Yu, SUN Wei-Min, ZONG Hong-Shi. Radio-Frequency Spectra of Ultracold Fermi Gases Including a Generalized GMB Approximation at Unitarity[J]. Chin. Phys. Lett., 2013, 30(11): 110303
[12] QI Xiu-Ying, ZHANG Ai-Xia, XUE Ju-Kui. Dynamics of Dark Solitons in Superfluid Fermi Gases[J]. Chin. Phys. Lett., 2013, 30(11): 110303
[13] WANG Ya-Hui, and MA Zhong-Qi. Ground State Energy of 1D Attractive δ-Function Interacting Fermi Gas[J]. Chin. Phys. Lett., 2012, 29(8): 110303
[14] TIE Lu, XUE Ju-Kui. The Anisotropy of Dipolar Condensate in One-Dimensional Optical Lattices[J]. Chin. Phys. Lett., 2012, 29(2): 110303
[15] YOU Yi-Zhuang. Ground State Energy of One-Dimensional δ-Function Interacting Bose and Fermi Gas[J]. Chin. Phys. Lett., 2010, 27(8): 110303
Viewed
Full text


Abstract