Chin. Phys. Lett.  2014, Vol. 31 Issue (1): 017101    DOI: 10.1088/0256-307X/31/1/017101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Density-Functional Theory Investigation of Sr2CrOsO6 with Cubic Symmetry Using Modified Becke–Johnson Potential
GUO San-Dong**
Department of Physics, School of Sciences, China University of Mining and Technology, Xuzhou 221116
Cite this article:   
GUO San-Dong 2014 Chin. Phys. Lett. 31 017101
Download: PDF(574KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the electronic structures and optical dielectric functions of the high temperature phase of Sr2CrOsO6 with cubic structure by using Tran and Blaha's modified Becke and Johnson exchange potential. In the absence of spin-orbit coupling, the total spin moment is 0μB. When spin-orbit coupling is included, the small total spin moment and an unquenched Os orbital moment appear, and the spin non-conservation gap becomes smaller. The calculated net magnetic moment is smaller than the popular generalized gradient approximation result, and the spin non-conservation gap is larger. The optical dielectric functions with spin-orbit coupling are not very different from the ones without spin-orbit coupling.
Received: 22 September 2013      Published: 28 January 2014
PACS:  71.20.-b (Electron density of states and band structure of crystalline solids)  
  78.20.-e (Optical properties of bulk materials and thin films)  
  75.10.-b (General theory and models of magnetic ordering)  
  71.20.Dg (Alkali and alkaline earth metals)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/1/017101       OR      https://cpl.iphy.ac.cn/Y2014/V31/I1/017101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GUO San-Dong
[1] Kobayashi K I, Kimura T, Sawada H, Terakura K and Tokura Y 1998 Nature 395 677
[2] Moritomo Y, Xu Sh, Machida A, Akimoto T, Nishibori E, Takata M and Sakata M 2000 Phys. Rev. B 61 R7827
[3] Kobayashi k I, Kimura T, Tomioka Y, Sawada H, Terakura K and Tokura Y 1999 Phys. Rev. B 59 11159
[4] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
[5] Kato H, Okuda T, Okimoto Y, Tomioka Y, Oikawa K, Kamiyama T and Tokura Y 2004 Phys. Rev. B 69 184412
[6] Park M S and Min B I 2005 Phys. Rev. B 71 052405
[7] Lee K W and Pickett W E 2008 Phys. Rev. B 77 115101
[8] Krockenberger Y, Mogare K, Reehuis M, Tovar M, Jansen M, Vaitheeswaran G, Kanchana V, Bultmark F, Delin A, Wilhelm F, Rogalev A, Winkler A and Alff L 2007 Phys. Rev. B 75 020404(R)
[9] Hauser A J, Soliz J R, Dixit M, Williams R E A, Susner M A, Peters B, Mier L M, Gustafson T L, Sumption M D, Fraser H L, Woodward P M and Yang F Y 2012 Phys. Rev. B 85 161201(R)
[10] Tran F and Blaha P 2009 Phys. Rev. Lett. 102 226401
[11] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[12] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 WIEN2k An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz Technische Universit?t Wien Austria)
[13] MacDonald A H, Pickett W E and Koelling D D 1980 J. Phys. C 13 2675
[14] Singh D J and Nordstrom L 2006 Plane Waves, Pseudopotentials and the LAPW Method 2nd edn (New York: Springer)
[15] Kunes J, Novak P, Schmid R, Blaha P and Schwarz K 2001 Phys. Rev. B 64 153102
[16] Koelling D D and Harmon B N 1977 J. Phys. C: Solid State Phys. 10 3107
[17] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[18] Singh D J 2010 Phys. Rev. B 82 205102
[19] Guo S D and Liu B G 2011 J. Appl. Phys. 110 073525
[20] Guo S D and Liu B G 2011 Europhys. Lett. 93 47006
[21] Singh D J 2010 Phys. Rev. B 82 155145
[22] Singh D J, Seo S S A and Lee H N 2010 Phys. Rev. B 82 180103(R)
[23] Guo S D and Liu B G 2012 J. Phys.: Condens. Matter 24 045502
[24] Guo S D and Liu B G 2012 Chin. Phys. B 21 017101
[25] Masood Yousaf et al 2012 Chin. Phys. Lett. 29 107401
[26] Becke A D and Johnson E R 2006 J. Chem. Phys. 124 221101
Related articles from Frontiers Journals
[1] Chuli Sun, Wei Guo, and Yugui Yao. Predicted Pressure-Induced High-Energy-Density Iron Pentazolate Salts[J]. Chin. Phys. Lett., 2022, 39(8): 017101
[2] Sheng Wang, Zia ur Rehman, Zhanfeng Liu, Tongrui Li, Yuliang Li, Yunbo Wu, Hongen Zhu, Shengtao Cui, Yi Liu, Guobin Zhang, Li Song, and Zhe Sun. Tailoring of Bandgap and Spin-Orbit Splitting in ZrSe$_{2}$ with Low Substitution of Ti for Zr[J]. Chin. Phys. Lett., 2022, 39(7): 017101
[3] Lulu Liu, Shoutao Zhang, and Haijun Zhang. Pressure-Driven Ne-Bearing Polynitrides with Ultrahigh Energy Density[J]. Chin. Phys. Lett., 2022, 39(5): 017101
[4] Kun Luo, Baozhong Li, Lei Sun, Yingju Wu, Yanfeng Ge, Bing Liu, Julong He, Bo Xu, Zhisheng Zhao, and Yongjun Tian. Novel Boron Nitride Polymorphs with Graphite-Diamond Hybrid Structure[J]. Chin. Phys. Lett., 2022, 39(3): 017101
[5] Bin Han, Junjie Zeng, and Zhenhua Qiao. In-Plane Magnetization-Induced Corner States in Bismuthene[J]. Chin. Phys. Lett., 2022, 39(1): 017101
[6] Zhe Huang, Xianbiao Shi, Gaoning Zhang, Zhengtai Liu, Soohyun Cho, Zhicheng Jiang, Zhonghao Liu, Jishan Liu, Yichen Yang, Wei Xia, Weiwei Zhao, Yanfeng Guo, and Dawei Shen. Photoemission Spectroscopic Evidence of Multiple Dirac Cones in Superconducting BaSn$_3$[J]. Chin. Phys. Lett., 2021, 38(10): 017101
[7] Wen-Han Dong, De-Liang Bao, Jia-Tao Sun, Feng Liu, and Shixuan Du. Manipulation of Dirac Fermions in Nanochain-Structured Graphene[J]. Chin. Phys. Lett., 2021, 38(9): 017101
[8] Yi Jiang, Zhong Fang, and Chen Fang. A $\boldsymbol{k}$$\cdot$$\boldsymbol{p}$ Effective Hamiltonian Generator[J]. Chin. Phys. Lett., 2021, 38(7): 017101
[9] Zhilin Xu, Shuai-Hua Ji, Lin Tang, Jian Wu, Na Li, Xinqiang Cai, and Xi Chen. Molecular Beam Epitaxy Growth and Electronic Structures of Monolayer GdTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 017101
[10] Shuai Liu, Si-Min Nie, Yan-Peng Qi, Yan-Feng Guo, Hong-Tao Yuan, Le-Xian Yang, Yu-Lin Chen, Mei-Xiao Wang, and Zhong-Kai Liu. Measurement of Superconductivity and Edge States in Topological Superconductor Candidate TaSe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 017101
[11] Yongqing Cai, Tao Xie, Huan Yang, Dingsong Wu, Jianwei Huang, Wenshan Hong, Lu Cao, Chang Liu, Cong Li, Yu Xu, Qiang Gao, Taimin Miao, Guodong Liu, Shiliang Li, Li Huang, Huiqian Luo, Zuyan Xu, Hongjun Gao, Lin Zhao, and X. J. Zhou. Common ($\pi$,$\pi$) Band Folding and Surface Reconstruction in FeAs-Based Superconductors[J]. Chin. Phys. Lett., 2021, 38(5): 017101
[12] Zhenjiang Han, Han Liu, Quan Li, Dan Zhou, and Jian Lv. Superior Mechanical Properties of GaAs Driven by Lattice Nanotwinning[J]. Chin. Phys. Lett., 2021, 38(4): 017101
[13] Yun-Xian Liu , Chao Wang, Shuai Han , Xin Chen , Hai-Rui Sun , and Xiao-Bing Liu. Novel Superconducting Electrides in Ca–S System under High Pressures[J]. Chin. Phys. Lett., 2021, 38(3): 017101
[14] Chen Qiu, Ruyue Cao, Cai-Xin Zhang, Chen Zhang, Dan Guo, Tao Shen, Zhu-You Liu, Yu-Ying Hu, Fei Wang, and Hui-Xiong Deng. First-Principles Study of Intrinsic Point Defects of Monolayer GeS[J]. Chin. Phys. Lett., 2021, 38(2): 017101
[15] Xingyong Huang, Liujiang Zhou, Luo Yan, You Wang, Wei Zhang, Xiumin Xie, Qiang Xu, and Hai-Zhi Song. HfX$_{2}$ (X = Cl, Br, I) Monolayer and Type II Heterostructures with Promising Photovoltaic Characteristics[J]. Chin. Phys. Lett., 2020, 37(12): 017101
Viewed
Full text


Abstract