CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Thermal Conductivity of the Partly Covered Inner Tube in a Double-Walled Carbon Nanotube with Varied Coverage Ratios |
PAN Rui-Qin1, XU Zi-Jian2**, DAI Cui-Xia1 |
1College of Science, Shanghai Institute of Technology, Shanghai 200235 2Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204
|
|
Cite this article: |
PAN Rui-Qin, XU Zi-Jian, DAI Cui-Xia 2014 Chin. Phys. Lett. 31 016501 |
|
|
Abstract We present a study of the thermal conductivity of a partly covered inner tube in a double-walled carbon nanotube with varied covering ratios using a non-equilibrium molecular dynamics method. Our results show that the thermal conductivity of the inner tube changes non-linearly and non-monotonically with the increasing coverage ratio, forming a V-shaped curve. Minimal conductivity occurs at the coverage ratio of 58%, with its value being 69% of the maximal conductivity, which appears in the full coverage case. We analyze three mutually competitive mechanisms that result in this thermal conductivity behavior with the assistance of a phonon spectrum calculation.
|
|
Received: 18 September 2013
Published: 28 January 2014
|
|
PACS: |
65.80.-g
|
(Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)
|
|
61.46.-w
|
(Structure of nanoscale materials)
|
|
61.48.-c
|
(Structure of fullerenes and related hollow and planar molecular structures)
|
|
|
|
|
[1] Osman M A and Srivastava D 2001 Nanotechnology 12 21 [2] Cumings J and Zettl A 2000 Science 289 602 [3] Cumings J, Collins P G and Zettl A 2000 Nature 406 586 [4] Zheng Q and Jiang Q 2002 Phys. Rev. Lett. 88 045503 Zheng Q, Liu J Z and Jiang Q 2002 Phys. Rev. B 65 245409 [5] Charlier A, McRae E, Heyd R, Charlier M F and Moretti D 1999 Carbon 37 1779 [6] Shen C, Brozena A H and Wang Y H 2011 Nanoscale 3 503 [7] Cao A Y, Ci L J, Li D J, Wei B Q, Xu C L, Liang J and Wu D H 2001 Chem. Phys. Lett. 335 150 [8] Bradley K, Cumings J, Star A, Gabriel J P and Gruner G 2003 Nano Lett. 3 929 [9] Liu C, Fan Y Y, Liu M, Cong H T, Cheng H M and Dresselhans M S 1999 Science 286 1127 [10] Lozovik Yu E, Minogin A V and Popov A M 2003 Phys. Lett. A 313 112 [11] Hu G J and Cao B Y 2012 Mol. Simul. 38 823 [12] Pan R Q, Xu Z J, Zhu Z Y and Wang Z X 2007 Nanotechnology 18 285704 [13] Müller-Plathe F 1997 J. Chem. Phys. 106 6082 [14] Kondo N, Yamamoto T and Watanabe K 2006 E-J. Surf. Sci. Nanotech. 4 239 [15] Pan R Q, Xu Z J and Zhu Z Y 2007 Chin. Phys. Lett. 24 1321 [16] Pan R Q 2011 Chin. Phys. Lett. 28 066104 [17] Sokhan V P, Nicholson D and Quirke N 2000 J. Chem. Phys. 113 2007 [18] Noya E G, Srivastava D, Chernozatonskii L A and Menon M 2004 Phys. Rev. B 70 115416 [19] Wang J Y, Peng J C, Peng C, Peng Z H, Ou Y and Shi X Y 2004 J. Funct. Mater. 35 2884 [20] Ye X, Sun D Y and Gong X G 2005 Phys. Rev. B 72 035454 [21] Zhang G and Li B W 2005 J. Chem. Phys. 123 114714 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|