Chin. Phys. Lett.  2014, Vol. 31 Issue (1): 016101    DOI: 10.1088/0256-307X/31/1/016101
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Mobility Enhancement and Gate-Induced-Drain-Leakage Analysis of Strained-SiGe Channel p-MOSFETs with Higher-κ LaLuO3 Gate Dielectric
YU Wen-Jie1**, ZHANG Bo1, LIU Chang1, XUE Zhong-Ying1, CHEN Ming1, ZHAO Qing-Tai2
1State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050
2Peter Grünberg Institute 9 (PGI 9), Forschungszentrum Jülich and JARA Fundamentals of Future Intormation Technology, 52425 Jülich, Germany
Cite this article:   
YU Wen-Jie, ZHANG Bo, LIU Chang et al  2014 Chin. Phys. Lett. 31 016101
Download: PDF(718KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A strained-SiGe p-channel metal-oxide-semiconductor-field-effect transistors (p-MOSFETS) with higher-κ LaLuO3 gate dielectric was fabricated and electrically characterized. The novel higher-κ (κ30) gate dielectric, LaLuO3, was deposited by molecular-beam deposition and shows good quality for integration into the transistor. The transistor features good output and transfer characteristics. The hole mobility was extracted by the splitting CV method and a value of 200 cm2/V?s was obtained for strong inversion conditions, which indicates that the hole mobility is well enhanced by SiGe channel and that the LaLuO3 layer does not induce additional significant carrier scattering. Gate induced drain leakage is measured and analyzed by using an analytical model. Band-to-band tunneling efficiencies under high and low fields are found to be different, and the tunneling mechanism is discussed.
Received: 02 September 2013      Published: 28 January 2014
PACS:  61.72.uf (Ge and Si)  
  77.84.-s (Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)  
  72.20.Ee (Mobility edges; hopping transport)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/1/016101       OR      https://cpl.iphy.ac.cn/Y2014/V31/I1/016101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YU Wen-Jie
ZHANG Bo
LIU Chang
XUE Zhong-Ying
CHEN Ming
ZHAO Qing-Tai
[1] von Haartman M, Malm B G and Ostling M 2006 IEEE Trans. Electron Devices 53 836
[2] Oh J, Ok I, Kang C Y, Jamil M, Lee S H, Loh W Y, Huang J, Sassman B, Smith L, Parthasarathy S, Coss B E, Choi W H, Lee H D, Cho M, Banerjee S K, Majhi P, Kirsch P D, Tseng H H and Jammy R 2009 Symp. VLSI Tech. Dig. 238
[3] Gomez L, Hashemi P and Hoyt J L 2009 IEEE Trans. Electron Devices 56 2644
[4] Nayak D K, Woo J C S, Park J S, Wang K L and MacWilliams K P 1993 Appl. Phys. Lett. 62 2853
[5] Fischetti M V and Laux S E 1996 J. Appl. Phys. 80 2234
[6] Lopes J M L, Roeckerath M, Heeg T, Rije E, Schubert J, Mantl S, Afanas'ev V V, Shamuilia S, Stesmans A, Jia Y and Schlom D G 2006 Appl. Phys. Lett. 89 222902
[7] Loo R, Sorada H, Inoue A, Lee B C, Hyun S, Jakschik S, Lujan G, Hoffmann T Y and Caymax M 2007 Semicond. Sci. Technol. 22 S110
[8] Romanjek K, Andrieu F, Ernst T and Ghibaudo G 2005 Solid-State Electron. 49 721
[9] Adrieu F, Ernst T, Faynot O, Bogumilowicz Y, Hartmann J M, Eymery J, Lafond D, Levaillant Y M, Dupre C, Powers R, Fournel F, Fenouillet-Beranger C, Vandooren A, Ghyselen B, Mazure C, Kernevez N, Ghibaudo G and Deleonibus S 2005 IEEE Int. SOI Conf. Proc. p 223
[10] Chen J, Chan T Y, Chen I C, Ko P K and Hu C 1987 IEEE Electron Device Lett. 8 515
[11] Chen J H, Wong S C and Wang Y H 2001 IEEE Trans. Electron Devices 48 1400
Related articles from Frontiers Journals
[1] Han Zhang, Chen Ming, Ke Yang, Hao Zeng, Shengbai Zhang, and Yi-Yang Sun. Chalcogenide Perovskite YScS$_{3}$ as a Potential p-Type Transparent Conducting Material[J]. Chin. Phys. Lett., 2020, 37(9): 016101
[2] Yi-Ze Wang, Chang Liu, Jian-Hui Cai, Qiang Liu, Xin-Ke Liu, Wen-Jie Yu, Qing-Tai Zhao. Experimental $I$–$V$ and $C$–$V$ Analysis of Schottky-Barrier Metal-Oxide-Semiconductor Field Effect Transistors with Epitaxial NiSi$_{2}$ Contacts and Dopant Segregation[J]. Chin. Phys. Lett., 2017, 34(7): 016101
[3] Jin-Feng Feng, Chang Liu, Wen-Jie Yu, Ying-Hong Peng. Oxygen Scavenging Effect of LaLuO$_{3}$/TiN Gate Stack in High-Mobility Si/SiGe/SOI Quantum-Well Transistors[J]. Chin. Phys. Lett., 2016, 33(05): 016101
[4] LIU Chang, YU Wen-Jie, ZHANG Bo, XUE Zhong-Ying, WU Wang-Ran, ZHAO Yi, ZHAO Qing-Tai. Equivalent Trap Energy Level Extraction for SiGe Using Gate-Induced-Drain-Leakage Current Analysis[J]. Chin. Phys. Lett., 2014, 31(10): 016101
[5] WANG Xi-Yuan, HUANG Yong-Guang, LIU De-Wei, ZHU Xiao-Ning, ZHU Hong-Liang. High Response in aTellurium-Supersaturated Silicon Photodiode[J]. Chin. Phys. Lett., 2013, 30(3): 016101
[6] Rehana Mustafa, S. Ahmed, E. U. Khan. Formation of Co-implanted Silicon Ultra-Shallow Junctions for Low Thermal Budget Applications[J]. Chin. Phys. Lett., 2013, 30(1): 016101
[7] KE Wei-Wei, FENG Xue**, HUANG Yi-Dong. Si-Nanocrystals with Bimodal Size Distribution in Evenly Annealed SiO Revealed with Raman Scattering[J]. Chin. Phys. Lett., 2012, 29(1): 016101
[8] QIU Ming-Xia, RUAN Shuang-Chen**, GAO Biao, HUO Kai-Fu, ZHAI Jian-Pang, LI Ling, LIAO Hui, XU Xin-Tong . H2-Assistance One-Step Growth of Si Nanowires and Their Growth Mechanism[J]. Chin. Phys. Lett., 2011, 28(10): 016101
[9] GAO Li-Peng, HAN Pei-De**, MAO Xue, FAN Yu-Jie, HU Shao-Xu, ZHAO Chun-Hua, MI Yan-Hong . Deep Energy Levels Formed by Se Implantation in Si[J]. Chin. Phys. Lett., 2011, 28(3): 016101
[10] DAI Jun, LI Zhen-Yu, YANG Jin-Long. Electron-phonon Coupling in Gallium-Doped Germanium[J]. Chin. Phys. Lett., 2010, 27(8): 016101
Viewed
Full text


Abstract