PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
|
|
|
|
Self-Organized Micro-Columns and Nano-Spheres Generated by Pulsed Laser Ablation of Ti/Al Alloy in Water |
CUI Qing-Qiang1, LIU Xiang-Dong1**, CHEN Ming1**, ZHAO Ming-Wen1, WANG Chun-Sheng2, LI Shuang1,3 |
1School of Physics and State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 2School of Chemistry, Shandong University, Jinan 250100 3School of Computer, Shandong Xiehe University, Jinan 250100
|
|
Cite this article: |
CUI Qing-Qiang, LIU Xiang-Dong, CHEN Ming et al 2014 Chin. Phys. Lett. 31 015202 |
|
|
Abstract Dense arrays of micro-columns are formed on the surface of Ti-Al alloy by cumulative nanosecond pulsed laser ablation in water. The fabric-like structure characterized by Ti-Al nano-spheres absorbed on micro-cluster in liquid is most likely responsible for the occurrence of laser micro-etching and localized melting, resulting in continuous deepening of micro-holes and the formation of micro-columns. Laser induced plasma spectroscopy is carried out to reveal the effect of micro-columns on subsequent pulse laser ablation. The intensity of spectral lines from Ti ions by additional laser ablation of the modified spot is higher than that created over a smooth surface. These results suggest that the micro-columns lead to an enhanced absorption of the following laser energy. The proposed results and relevant discussions are of importance for the development of light-trapping coatings on a metal surface.
|
|
Received: 05 August 2013
Published: 28 January 2014
|
|
PACS: |
52.38.Mf
|
(Laser ablation)
|
|
52.70.Kz
|
(Optical (ultraviolet, visible, infrared) measurements)
|
|
52.38.Ph
|
(X-ray, γ-ray, and particle generation)
|
|
|
|
|
[1] Her T H, Finlay R J, Wu C, Deliwala S and Mazur E 1998 Appl. Phys. Lett. 73 1673 [2] Elgazzar H, Abdel-Rahman E, Salem H G and Nassar F 2010 Appl. Surf. Sci. 256 2056 [3] Man B Y, Yang H, Zhuang H Z, Liu M, Wei X Q, Zhu H C and Xue C S 2007 J. Appl. Phys. 101 093519 [4] Bigne F B 2008 Spectroch. Acta Part. B 63 1122 [5] Chichkov B N, Momma C, Nolte S, Alvensleben F and Tünnermann A 1996 Appl. Phys. A 63 109 [6] Ashofold M N R, Chaeyssens F, Fuge G M and Henley S J 2004 Chem. Soc. Rev. 33 23 [7] He F, Cheng Y, Xu Z Z, Liao Y, Liao J, Xu J, Sun H Y, Wang C, Zhou Z H, Sugioka K, Midorikawa K, Xu Y H and Chen X F 2010 Opt. Lett. 35 282 [8] Xu H, Sheng Z M, Zheng J, Xia Y J 2010 Chin. Phys. Lett. 27 045201 [9] Bonse J, Krüger J, H?hm S and Rosenfeld A 2012 J. Laser Appl. 24 042006 [10] Yan Z J, Bao R Q and Douglas B C 2010 Nanotechnology 21 145609 [11] Yu B H, Dai N L, Wang Y, Li Y H, Ji L L, Zheng Q G and Lu P X 2007 Acta Phys. Sin. 56 5821 (in Chinese) [12] H?tch M J, Dunin-Borkowski R E, Scheinfein M R, Moulin J, Duhamel C, Mazaleyrat F and Champion Y 2003 Phys. Rev. Lett. 91 257207 [13] Bokare A D, Chikate R C, Rode C V and Paknikar K M 2007 Environ. Sci. Technol. 41 7437 [14] B ?rsch N, Jakobi J, Weiler S and Bavciknowski S 2009 Nanotechnology 20 445603 [15] Gong W W, Zheng Z H, Zheng J J, Gao W, Hu X B and Ren X G 2008 J. Phys. Chem. C 112 9983 [16] Zakariyah S S, Conway P P and Hutt D A 2011 J. Lightwave Technol. 29 3566 [17] Pedraza A J, Fowlkes J D and Lowndes D H 2000 Appl. Phys. Lett. 77 3018 [18] Fowlkes J D and Pedraza A J 2000 Appl. Phys. Lett. 77 1629 [19] Chen M, Liu X D, Liu Y H and Zhao M W 2012 J. Appl. Phys. 111 103108 [20] Liu Y H, Liu X D, Chen M and Zhao M W 2012 Appl. Mech. Mater. 217 2257 [21] Ding F, Zheng S J, Ke B, Tang Z L, Zhang Y C, Yang K, Xie X H and Zhu X D 2013 Chin. Phys. Lett. 30 085201 [22] Zheng Z Y, Fan Z J, Wang S W, Dong A G, Xing J and Zhang Z L 2012 Chin. Phys. Lett. 29 095202 [23] Seifert G, Kaempfe M, Syrowatka F, Harnagea C, Hesse D and Graener H 2005 Appl. Phys. A 81 799 [24] Seifert G, Kaempfe M, Berg K J and Graener H 2000 Appl. Phys. B 71 795 [25] Seifert G, Kaempfe M, Berg K J and Graener H 2001 Appl. Phys. B 73 355 [26] Lowndes D H, Fowlkes J D and Pedraza A J 2000 Appl. Surf. Sci. 154 647 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|