Chin. Phys. Lett.  2014, Vol. 31 Issue (1): 012901    DOI: 10.1088/0256-307X/31/1/012901
NUCLEAR PHYSICS |
Dosimetry Methods of Fast Neutron Using the Semiconductor Diodes
H. Zaki Dizaji1,2**, T. Kakavand3, F. Abbasi Davani4
1Department of Physics, Faculty of Science, Zanjan University, Zanjan, Iran
2Department of Physics, Faculty of Science, Imam Hossein Comprehensive University, Tehran, Iran
3Department of Physics, Faculty of Science, Imam Khomeini international University, Qazvin, Iran
4Department of Radiation Application, Shahid Beheshti University, Tehran, Iran
Cite this article:   
H. Zaki Dizaji, T. Kakavand, F. Abbasi Davani 2014 Chin. Phys. Lett. 31 012901
Download: PDF(683KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Semiconductor detectors based on a silicon pin diode are frequently used in the detection of different nuclear radiations. For the detection and dosimetry of fast neutrons, these silicon detectors are coupled with a fast neutron converter. Incident neutrons interact with the converter and produce charged particles that can deposit their energy in the detectors and produce a signal. In this study, three methods are introduced for fast neutron dosimetry by using the silicon detectors, which are: recoil proton spectroscopy, similarity of detector response function with conversion function, and a discriminator layer. Monte Carlo simulation is used to calculate the response of dosimetry systems based on these methods. In the different doses of an 241Am-Be neutron source, dosimetry responses are evaluated. The error values of measured data for dosimetry by these methods are in the range of 15–25%. We find fairly good agreement in the 241Am-Be neutron sources.
Received: 26 August 2013      Published: 28 January 2014
PACS:  29.30.Hs (Neutron spectroscopy)  
  29.30.Ep (Charged-particle spectroscopy)  
  29.40.Wk (Solid-state detectors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/1/012901       OR      https://cpl.iphy.ac.cn/Y2014/V31/I1/012901
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
H. Zaki Dizaji
T. Kakavand
F. Abbasi Davani
[1] Shani G 2001 Radiation Dosimetry: Instrumentation and Methods 2nd edn (Boca Raton: CRC) chap 4 p 8
[2] Zaki Dizaji H, Shahriari M and Etaati G R 2007 Radiat. Meas. 42 1332
[3] Boziari A, Koukorava C and Carinou E 2011 Radiat. Prot. Dosim. 144 173
[4] Barthe J 2001 Nucl. Instrum. Methods Phys. Res. Sect. B 184 158
[5] Rosenfeld A B 2007 Radiat. Meas. A 41 134
[6] Luszik-Bhadra M and Perle S 2006 Radiat. Prot. Dosim. 123 546
[7] Nunomiya T, Abe S, Aoyama K and Nakamura T 2007 Radiat. Prot. Dosim. 126 284
[8] Wielunski M, Schutz R, Fantuzzi E, Pagnamenta A, Wahl W, Palfalvi J, Zombori P, Andrasi A, Stadtmann H and Schmitzer Ch 2004 Nucl. Instrum. Methods Phys. Res. Sect. A 517 240
[9] McDonald J C 2004 Radiat. Prot. Dosim. 110 743
[10] Bolognese-Milsztajn T, Ginjaume M and Luszik-Bhadra M 2004 Radiat. Prot. Dosim. 112 141
[11] Luszik-Bhadra M 2004 Radiat. Prot. Dosim. 110 747
[12] McGregor D S, Klann R T, Gersch H K and Yang Y H 2001 Nucl. Instrum. Methods Phys. Res. Sect. A 466 126
[13] Sagatova-Perdochova A, Dubeck F, Zatko B, Chodak I, Ladziansky M and Necas V 2007 Nucl. Instrum. Methods Phys. Res. Sect. A 576 56
[14] UT-Battelle 2002 Version 2.4.0 LANL Report LA-CP-02-408 Los Alamos
[15] ICRP 1996 ICRP Publication 74. Ann. ICRP 26 (3/4)
[16] ISO 8529-1 2000 International Organization for Standardization
Related articles from Frontiers Journals
[1] Xiao-Hui Yu, Yuan Liu, San-Ya Du, Xu Zheng, Jin-Long Zhu, Hong-Wu Xu, Jian-Zhong Zhang, Shi-Yu Du, Xiao-Cheng Zeng, J. S. Francisco, Chang-Qing Jin, Yu-Sheng Zhao, Hui Li. CH$_{4}$ Gas Extraction by CO$_{2}$: Substitution in Clathrate Hydrate through Bimolecular Iteration[J]. Chin. Phys. Lett., 2020, 37(4): 012901
[2] ZHU Qing-Jun, TIAN Li-Chao, YANG Xiao-Hu, GAN Long-Fei, ZHAO Na, MA Yan-Yun. Advantages of Artificial Neural Network in Neutron Spectra Unfolding[J]. Chin. Phys. Lett., 2014, 31(07): 012901
Viewed
Full text


Abstract