NUCLEAR PHYSICS |
|
|
|
|
Dosimetry Methods of Fast Neutron Using the Semiconductor Diodes |
H. Zaki Dizaji1,2**, T. Kakavand3, F. Abbasi Davani4 |
1Department of Physics, Faculty of Science, Zanjan University, Zanjan, Iran 2Department of Physics, Faculty of Science, Imam Hossein Comprehensive University, Tehran, Iran 3Department of Physics, Faculty of Science, Imam Khomeini international University, Qazvin, Iran 4Department of Radiation Application, Shahid Beheshti University, Tehran, Iran
|
|
Cite this article: |
H. Zaki Dizaji, T. Kakavand, F. Abbasi Davani 2014 Chin. Phys. Lett. 31 012901 |
|
|
Abstract Semiconductor detectors based on a silicon pin diode are frequently used in the detection of different nuclear radiations. For the detection and dosimetry of fast neutrons, these silicon detectors are coupled with a fast neutron converter. Incident neutrons interact with the converter and produce charged particles that can deposit their energy in the detectors and produce a signal. In this study, three methods are introduced for fast neutron dosimetry by using the silicon detectors, which are: recoil proton spectroscopy, similarity of detector response function with conversion function, and a discriminator layer. Monte Carlo simulation is used to calculate the response of dosimetry systems based on these methods. In the different doses of an 241Am-Be neutron source, dosimetry responses are evaluated. The error values of measured data for dosimetry by these methods are in the range of 15–25%. We find fairly good agreement in the 241Am-Be neutron sources.
|
|
Received: 26 August 2013
Published: 28 January 2014
|
|
|
|
|
|
[1] Shani G 2001 Radiation Dosimetry: Instrumentation and Methods 2nd edn (Boca Raton: CRC) chap 4 p 8[2] Zaki Dizaji H, Shahriari M and Etaati G R 2007 Radiat. Meas. 42 1332[3] Boziari A, Koukorava C and Carinou E 2011 Radiat. Prot. Dosim. 144 173[4] Barthe J 2001 Nucl. Instrum. Methods Phys. Res. Sect. B 184 158[5] Rosenfeld A B 2007 Radiat. Meas. A 41 134[6] Luszik-Bhadra M and Perle S 2006 Radiat. Prot. Dosim. 123 546[7] Nunomiya T, Abe S, Aoyama K and Nakamura T 2007 Radiat. Prot. Dosim. 126 284[8] Wielunski M, Schutz R, Fantuzzi E, Pagnamenta A, Wahl W, Palfalvi J, Zombori P, Andrasi A, Stadtmann H and Schmitzer Ch 2004 Nucl. Instrum. Methods Phys. Res. Sect. A 517 240[9] McDonald J C 2004 Radiat. Prot. Dosim. 110 743[10] Bolognese-Milsztajn T, Ginjaume M and Luszik-Bhadra M 2004 Radiat. Prot. Dosim. 112 141[11] Luszik-Bhadra M 2004 Radiat. Prot. Dosim. 110 747[12] McGregor D S, Klann R T, Gersch H K and Yang Y H 2001 Nucl. Instrum. Methods Phys. Res. Sect. A 466 126[13] Sagatova-Perdochova A, Dubeck F, Zatko B, Chodak I, Ladziansky M and Necas V 2007 Nucl. Instrum. Methods Phys. Res. Sect. A 576 56[14] UT-Battelle 2002 Version 2.4.0 LANL Report LA-CP-02-408 Los Alamos[15] ICRP 1996 ICRP Publication 74. Ann. ICRP 26 (3/4)[16] ISO 8529-1 2000 International Organization for Standardization |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|