Chin. Phys. Lett.  2014, Vol. 31 Issue (1): 012101    DOI: 10.1088/0256-307X/31/1/012101
NUCLEAR PHYSICS |
Three-Body Calculation of the 4He(3H,γ)7Li and 4He(3He,γ)7Be Reactions and Structure of the 7Li and 7Be at Solar Energies
H. Sadeghi**, H. Khalili
Department of Physics, Faculty of Science, Arak University, Arak 8349-8-38156, Iran
Cite this article:   
H. Sadeghi, H. Khalili 2014 Chin. Phys. Lett. 31 012101
Download: PDF(495KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The two 3H+4He and 3He+4He fusion reactions at low energies are usually viewed as an approximate external capture process. We study the 4He(3H,γ)7Li and 4He(3He,γ)7Be reactions in a cluster model, which can take into account two- and three-body electromagnetic currents, using minimal substitution in the explicit momentum dependence of the two- and three-cluster interactions. Our main goal is to explore how the cross section of the low-energy 3H+4He or 3He+4He capture reactions depends on energy. The astrophysical S-factors for these reactions are calculated at very low energies. We construct the conserved realistic Argonne v18 for two nucleons and Urbana IX or Tucson-Melbourne three-cluster interactions, which are considered for calculation. We also calculate the binding energies and the structural properties of 3H+4He or 3He+4He systems. The binding energies are found to be ?37.72 (?36.32) MeV and ?39.35 (?37.43) MeV, with (without) three-body interactions for 7Be and 7Li, in satisfactory agreement with other theoretical results and experimental data, respectively.
Received: 30 August 2013      Published: 28 January 2014
PACS:  21.45.-v (Few-body systems)  
  25.10.+s (Nuclear reactions involving few-nucleon systems)  
  21.60.Gx (Cluster models)  
  26.65.+t (Solar neutrinos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/1/012101       OR      https://cpl.iphy.ac.cn/Y2014/V31/I1/012101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
H. Sadeghi
H. Khalili
[1] Bemmerer D et al 2006 Phys. Rev. Lett. 97 122502
[2] Carlson J et al 1990 Phys. Rev. C 42 830
[3] Carlson J et al 1991 Phys. Rev. C 44 619
[4] Carmona-Gallardo M 2012 J. Phy.: Conf. Ser. 337 012061
[5] Deltuva A 2009 Phys. Rev. C 80 064002
[6] Golak J et al 2005 Phys. Rep. 415 89
[7] Khalidi K, Elster Ch and Gl?ckle W 2010 Phys. Rev. C 82 054002
[8] Marcucci L E et al 2005 Phys. Rev. C 72 014001
[9] Miyagawa K and Gl?ckle W 1993 Phys. Rev. C 48 2576
[10] Navratil P, Roth R and Quaglioni S 2010 arXiv:1007.0525 [nucl-th]
[11] Neff T 2011 Phys. Rev. Lett. 106 042502
[12] Brune C R, Kavanagh R W and Rolfs C 1994 Phys. Rev. C 50 2205
[13] Sadeghi H 2013 Astron. Space Sci. 347 261
Sadeghi H 2013 Chin. Phys. Lett. 30 102501
[14] Mason A et al 2009 Eur. Phys. J. A 39 107
[15] Nollett K M et al 2007 Phys. Rev. Lett. 99 022502
Related articles from Frontiers Journals
[1] Firoozabadi M. M., Sadeghi H.. Three-Body Calculation of 4He(αα,γ)12C Reaction at Stellar Energies[J]. Chin. Phys. Lett., 2015, 32(07): 012101
[2] H. Sadeghi, M. Mosavi-Khansari. The Photon Polarization Parameter of 2H(n,γ)3H reaction with Inclusion of the Electric Quadrupole Contribution[J]. Chin. Phys. Lett., 2014, 31(09): 012101
[3] LIN Qi-Hu, REN Zhong-Zhou. Bound 0+ Excited States of Three-Body Systems with Short-Range Two-Body Interactions[J]. Chin. Phys. Lett., 2013, 30(5): 012101
[4] Bhupali Sharma. Variational Monte Carlo Study of ΛΛ4H[J]. Chin. Phys. Lett., 2013, 30(3): 012101
[5] JIA Er-Wei, PANG Hou-Rong. KKN and KKN Molecular States with I=1/2, 3/2 and JP=1/2+ Studied with Three-Body Faddeev Calculations[J]. Chin. Phys. Lett., 2011, 28(6): 012101
[6] DAI Lian-Rong. Nucleon-Nucleon Interaction and the Mixing of Scalar Meson[J]. Chin. Phys. Lett., 2010, 27(1): 012101
[7] YU Ning, LIU Fu-Qing, ZHANG Huan-Qiao,. Three-Body Faddeev Approach to Two-Proton Emissions from 18Ne Excited State[J]. Chin. Phys. Lett., 2009, 26(11): 012101
Viewed
Full text


Abstract