Chin. Phys. Lett.  2014, Vol. 31 Issue (09): 095201    DOI: 10.1088/0256-307X/31/9/095201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Placement Scheme of Numerous Laser Beams in the Context of Fiber-Based Laser Fusion
XU Teng, XU Li-Xin**, WANG An-Ting, GU Chun, WANG Sheng-Bo, LIU Jing, WEI An-Kun
Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei 230026
Cite this article:   
XU Teng, XU Li-Xin, WANG An-Ting et al  2014 Chin. Phys. Lett. 31 095201
Download: PDF(762KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A simple scheme based on the uniform distribution for the placement of numerous laser beams in the context of fiber-based laser fusion is proposed. It is theoretically demonstrated that all modes of the geometrical factor can be eliminated if sufficient laser beams are uniformly distributed on the sphere. In the case of a finite number of laser beams, a quasi-uniform distribution of beams can be achieved based on the equal area subdivision algorithm. Numerical simulations indicate that with the increasing number of laser beams, the order of the dominant geometrical mode increases, and the irradiation nonuniformity decreases accordingly.
Published: 22 August 2014
PACS:  52.57.Fg (Implosion symmetry and hydrodynamic instability (Rayleigh-Taylor, Richtmyer-Meshkov, imprint, etc.))  
  42.55.Wd (Fiber lasers)  
  42.60.By (Design of specific laser systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/9/095201       OR      https://cpl.iphy.ac.cn/Y2014/V31/I09/095201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Teng
XU Li-Xin
WANG An-Ting
GU Chun
WANG Sheng-Bo
LIU Jing
WEI An-Kun
[1] Temporal M and Canaud B 2011 Eur. Phys. J. D 65 447
[2] Temporal M and Canaud B 2009 Eur. Phys. J. D 55 139
[3] Temporal M, Canaud B, Garbett W, Philippe F and Ramis R 2013 Eur. Phys. J. D 67 1
[4] Ramis R, Temporal M, Canaud B and Brandon V 2013 EPJ. Web Conf. 59 02017
[5] Temporal M, Canaud B, Garbett W J and Ramis R 2014 Phys. Plasmas 21 012710
[6] Bodner S 1981 J. Fusion Energ. 1 221
[7] Wang L F, Ye W H and Li Y J 2010 Chin. Phys. Lett. 27 025203
[8] Ye W H, Wang L F and He X T 2010 Chin. Phys. Lett. 27 125203
[9] Skupsky S, Short R W, Kessler T, Craxton R S, Letzring S and Soures J M 1989 J. Appl. Phys. 66 3456
[10] Tsubakimoto K, Yamanaka C, Miyanaga N, Nakatsuka M, Jitsuno T and Nakai S 1996 AIP Conf. Proc. 369 975
[11] Murakami M 1995 Appl. Phys. Lett. 66 1587
[12] Xiao J and Lu B D 1998 J. Opt. 29 282
[13] Sergey G G, Vladimir N D and Roman A S 2004 Quantum Electron. 34 427
[14] Labaune C, Hulin D, Galvanauskas A and Mourou G A 2008 Opt. Commun. 281 4075
[15] Mourou G A, Labaune C, Hulin D and Galvanauskas A 2008 J. Phys.: Conf. Ser. 112 032052
[16] Kidder R E 1976 Nucl. Fusion 16 3
[17] Skupsky S and Lee K 1983 J. Appl. Phys. 54 3662
[18] Kuipers L and Niederreiter H 1974 Uniform Distribution of Sequences (Wiley: New York)
[19] Song L, Kimerling A J and Sahr K 2002 Developing an Equal Area Global Grid by Small Circle Subdivision (Santa Barbara: National Center for Geographic Information & Analysis)
Related articles from Frontiers Journals
[1] Yun-Peng Yang, Jing Zhang, Zhi-Yuan Li, Li-Feng Wang, Jun-Feng Wu, Wun-Hua Ye, and Xian-Tu He. Interface Width Effect on the Weakly Nonlinear Rayleigh–Taylor Instability in Spherical Geometry[J]. Chin. Phys. Lett., 2020, 37(7): 095201
[2] Yun-Peng Yang, Jing Zhang, Zhi-Yuan Li, Li-Feng Wang, Jun-Feng Wu, Wen-Hua Ye, Xian-Tu He. Simulation of the Weakly Nonlinear Rayleigh–Taylor Instability in Spherical Geometry[J]. Chin. Phys. Lett., 2020, 37(5): 095201
[3] Zhi-Yuan Li, Li-Feng Wang, Jun-Feng Wu, Wen-Hua Ye. Phase Effects of Long-Wavelength Rayleigh–Taylor Instability on the Thin Shell[J]. Chin. Phys. Lett., 2020, 37(2): 095201
[4] Huan Zheng, Qian Chen, Baoqing Meng, Junsheng Zeng, Baolin Tian. On the Nonlinear Growth of Multiphase Richtmyer–Meshkov Instability in Dilute Gas-Particles Flow[J]. Chin. Phys. Lett., 2020, 37(1): 095201
[5] Meng Li, Wen-Hua Ye. Successive Picket Drive for Mitigating the Ablative Richtmyer–Meshkov Instability[J]. Chin. Phys. Lett., 2019, 36(2): 095201
[6] Hong-Yu Guo, Li-Feng Wang, Wen-Hua Ye, Jun-Feng Wu, Wei-Yan Zhang. Weakly Nonlinear Rayleigh–Taylor Instability in Cylindrically Convergent Geometry[J]. Chin. Phys. Lett., 2018, 35(5): 095201
[7] Hong-Yu Guo, Li-Feng Wang, Wen-Hua Ye, Jun-Feng Wu, Wei-Yan Zhang. Linear Growth of Rayleigh–Taylor Instability of Two Finite-Thickness Fluid Layers[J]. Chin. Phys. Lett., 2017, 34(7): 095201
[8] Hong-Yu Guo, Li-Feng Wang, Wen-Hua Ye, Jun-Feng Wu, Wei-Yan Zhang. Weakly Nonlinear Rayleigh–Taylor Instability in Incompressible Fluids with Surface Tension[J]. Chin. Phys. Lett., 2017, 34(4): 095201
[9] GUO Hong-Yu, YU Xiao-Jin, WANG Li-Feng, YE Wen-Hua, WU Jun-Feng, LI Ying-Jun. On the Second Harmonic Generation through Bell–Plesset Effects in Cylindrical Geometry[J]. Chin. Phys. Lett., 2014, 31(04): 095201
[10] WANG Li-Feng, WU Jun-Feng, YE Wen-Hua, FAN Zheng-Feng, HE Xian-Tu. Design of an Indirect-Drive Pulse Shape for ~1.6 MJ Inertial Confinement Fusion Ignition Capsules[J]. Chin. Phys. Lett., 2014, 31(04): 095201
[11] YE Wen-Hua, **, WANG Li-Feng, , HE Xian-Tu, . Jet-Like Long Spike in Nonlinear Evolution of Ablative Rayleigh–Taylor Instability[J]. Chin. Phys. Lett., 2010, 27(12): 095201
[12] WANG Li-Feng, YE Wen-Hua, , LI Ying-Jun. Two-Dimensional Rayleigh-Taylor Instability in Incompressible Fluids at Arbitrary Atwood Numbers[J]. Chin. Phys. Lett., 2010, 27(2): 095201
[13] WANG Li-Feng, YE Wen-Hua, , LI Ying-Jun. Numerical Simulation of Anisotropic Preheating Ablative Rayleigh-Taylor Instability[J]. Chin. Phys. Lett., 2010, 27(2): 095201
[14] WANG Li-Feng, YE Wen-Hua, , FAN Zheng-Feng, XUE Chuang, LI Ying-Jun. A Weakly Nonlinear Model for Kelvin-Helmholtz Instability in Incompressible Fluids[J]. Chin. Phys. Lett., 2009, 26(7): 095201
Viewed
Full text


Abstract