PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
|
|
|
|
Millimeter Propagation and High Confinement in Rhombus-Based Hybrid Plasmonic Waveguides |
HU Ru, LANG Pei-Lin, ZHAO Yu-Fang, DUAN Gao-Yan, WANG Lu-Lu, DAI Jin, CHEN Zhao, YU Li**, XIAO Jing-Hua |
State Key Laboratory of Information Photonics and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications, Beijing 100876
|
|
Cite this article: |
HU Ru, LANG Pei-Lin, ZHAO Yu-Fang et al 2014 Chin. Phys. Lett. 31 095202 |
|
|
Abstract A hybrid plasmonic waveguide, consisting of two dielectric nanowires symmetrically put at the opposite corner angles of a rhombic metal, is proposed and numerically analyzed by the finite-element method. Simulations show that the present waveguide can achieve the millimeter propagation distance (1244 μm) and deep subwavelength mode area (5.5×10?3 μm2), simultaneously. Compared with the previous hybrid waveguides based on cylinder nanowires or flat films, the rhombic corner angles enable our waveguide to achieve both longer propagation distance and smaller mode area. This is due to the enhanced coupling between the dielectric guided mode in nanowires and the surface plasmon polariton mode at rhombic surface. Furthermore, the extreme confinement near the rhombic corner angles can strengthen the light-matter interaction greatly and make the present waveguide useful in many applications, such as nonlinear photonics, high-quality nanolasers and nanophotonic waveguides.
|
|
Published: 22 August 2014
|
|
|
|
|
|
[1] Maier S A 2007 Plasmonics: Fundamentals and Applications (Berlin: Springer) [2] Ozbay E 2006 Science 311 189 [3] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824 [4] Lu H, Liu X M and Mao D 2012 Nanotechnology 23 444003 [5] Chen Z, Yu L and Wang L L 2013 Chin. Phys. Lett. 30 054212 [6] Gupta B, Pandey S and Nahata A 2014 Opt. Express 22 2868 [7] Zhao Y S and Zhu L 2010 J. Opt. Soc. Am. B 27 1260 [8] Bian Y S, Zheng Z and Zhou T 2013 J. Opt. 15 055011 [9] Oulton R F, Sorger V J and Genov D A 2008 Nat. Photon. 2 496 [10] Bian Y S, Zheng Z, Liu Y and Zhou T 2011 Opt. Express 19 22417 [11] Chen L, Zhang T, Li X and Huang W P 2012 Opt. Express 20 20535 [12] Bian Y S, Zheng Z, Liu Y and Zhou T 2010 Opt. Express 18 23756 [13] Chu H S, Li E P and Hegde R 2010 Appl. Phys. Lett. 96 221103 [14] Jeong C Y, Kim M and Kim S 2013 Opt. Express 21 17404 [15] Bian Y S, Zheng Z and Zhao X 2012 IEEE Photon. Technol. Lett. 24 1279 [16] Huang C C 2013 Opt. Express 21 29544 [17] Gong H, Liu Y M and Yu Z Y 2014 Chin. Phys. B 23 046103 [18] Olyaeefar B and Khoshsima H 2014 J. Phys. D: Appl. Phys. 47 105105 [19] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370 [20] Lou F, Wang Z C and Wosinski L 2012 Appl. Phys. Lett. 100 241105 [21] Alam M Z, Caspers J N and Mojahedi M 2013 Opt. Express 21 16029 [22] Nielsen M G, Bernardin T and Weeber J C 2014 Opt. Lett. 39 2282 [23] Zhang L and Yang S 2013 Chin. Phys. Lett. 30 034208 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|