FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
A Reflective Nonlinear Acoustic Microscope to Contour the Quantitative Adhesion at a Bonded Solid-Solid Interface |
CHEN Jian-Jun**, ZHANG De, LIU Xiao-Zhou |
Key Laboratory of Modern Acoustics, and Institute of Acoustics, Nanjing University, Nanjing 210093
|
|
Cite this article: |
CHEN Jian-Jun, ZHANG De, LIU Xiao-Zhou 2014 Chin. Phys. Lett. 31 094301 |
|
|
Abstract We set up a reflective nonlinear acoustic microscope to contour the quantitative adhesion at a bonded solid-solid interface by a contact acoustic nonlinearity (CAN) method. The principle of the reflective nonlinear acoustic microscope is described. After the vibration amplitude of the incident, focusing wave at the bonded interface is calculated, the standard adhesion with a complete bonding state is established by the tension test, the reflective CAN parameter is calibrated, and the quantitative contour of the adhesion at the interface can be obtained. The experimental contours of two samples are also presented. Compared with the transmitted microscope, the reflective one is more convenient and more suitable for practical applications.
|
|
Published: 22 August 2014
|
|
PACS: |
43.25.+y
|
(Nonlinear acoustics)
|
|
81.70.Cv
|
(Nondestructive testing: ultrasonic testing, photoacoustic testing)
|
|
43.58.+z
|
(Acoustical measurements and instrumentation)
|
|
|
|
|
[1] Fassbender-Pangraz S and Arnold W 1995 Review of Progress in QNDE ed Thompson D O and Chimenti D E (New York: Plenum) vol 13B p 2001; vol 11B p 2069 [2] Han Q B, Qian M L and Wang H 2006 Ultrasonics 44 Suppl. 1 e1323 [3] Mulaveesala R, Pal P and Tuli S 2006 Sensors Actuators A: Phys. 128 209 [4] Olivier M, Rochat N, Chabli A, Lefeuvre G and Conne F 2001 Mater. Sci. Semiconductor Process. 4 15 [5] Hosson J T M D and Kooi B J 2001 Handbook of Surfaces and Interfaces of Materials (London: Academic) p 1 [6] Akker S and Arman J 1997 Ultrasonics 35 287 [7] Datta S K, Shah A H, Bratton R L and Chakraborty T 1988 J. Acoust. Sot. Am. 83 2020 [8] Rothenfusser M, Mayr M and Baumann J 2000 Ultrasonics 38 322 [9] Chen J, Jiang W and Shui Y 1999 Chin. J. Acoust. 18 89 [10] Chen J J, Zhang D, Mao Y and Cheng J 2006 Ultrasonics 44 Suppl. 1 p e1355 [11] Chen J, Zhang D, Mao Y and Cheng J 2009 Chin. Phys. Lett. 26 014302 [12] Chen J, Zhang D, Mao Y and Cheng J 2011 Chin. Phys. Lett. 28 084301 [13] Richardson J M 1979 Int. J. Engin. Sci. 17 73 [14] Solodov I Y 1998 Ultrasonics 36 383 [15] Solodov I, Pfleiderer K, Gerhard H, Predak S and Busse G 2006 NDT E Int. 39 176 [16] Solodov I, Pfleiderer K, Gerhard H and Busse G 2004 Ultrasonics 42 1011 [17] Du G H, Zhu Z M and Gong X F 1986 Foundation of Acoustics I (Shanghai: Shanghai Technology Press) p 195 [18] Lemons R F and Quate C F 1979 ``Acoustic Microscopy'' Chapter in Physical Acoustics: Principle and Mechods (New York: Academic) vol XIV p 1 [19] Wu W Q, Ni Y F, Qiu G and Zhang D 1998 IEEE Ultrason. Symp. (New York: IEEE) p 1175 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|