Chin. Phys. Lett.  2014, Vol. 31 Issue (09): 094207    DOI: 10.1088/0256-307X/31/9/094207
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Narrow-Band Thermal Radiation Based on Microcavity Resonant Effect
HUANG Jin-Guo1, XUAN Yi-Min1,2**, LI Qiang1
1School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094
2School of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016
Cite this article:   
HUANG Jin-Guo, XUAN Yi-Min, LI Qiang 2014 Chin. Phys. Lett. 31 094207
Download: PDF(680KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The microcavity resonant effect is used to realize narrow-band thermal radiation. Periodic circular aperture arrays with square lattice are patterned on Si substrates by using standard photolithographic techniques and reactive ion etching techniques. Ag films are deposited on the surface of Si substrates with aperture arrays to improve the infrared reflectance. On the basis of the micromachining process, an Ag/Si structured surface exhibiting narrow-band radiation and directivity insensitivity is presented. The emittance spectra exhibit several selective emittance bands attributed to the microcavity resonance effect. The dependence of emittance spectra on sizes and direction is also experimentally examined. The results indicate that the emittance peak of the Ag/Si structured surface can be modulated by tailoring the structural sizes. Moreover, the emittance peak is independent of the radiant angle, which is very important for designing high-performance thermal emitters.
Published: 22 August 2014
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.50.St (Nonclassical interferometry, subwavelength lithography)  
  42.50.Wk (Mechanical effects of light on material media, microstructures and particles)  
  44.40.+a (Thermal radiation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/9/094207       OR      https://cpl.iphy.ac.cn/Y2014/V31/I09/094207
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HUANG Jin-Guo
XUAN Yi-Min
LI Qiang
[1] Shuai Y, Tan H and Liang Y 2014 Quant. Spectrosc. Radiat. Transfer 135 50
[2] Kusunoki F, Kohama T, Hiroshima T, Fukumoto S, Takahara J and Kobayashi T 2004 Jpn. J. Appl. Phys. 43 5253
[3] Maruyama S, Kashiwa T, Yugami H and Esashi M 2001 Appl. Phys. Lett. 79 1393
[4] Tay S, Kropachev A, Araci I E, Skotheim T, Norwood R A and Peyghambarian N 2009 Appl. Phys. Lett. 94 071113
[5] Ye Y H, Jiang Y W, Tsai M W, Chang Y T, Chen C Y, Tzuang D C, Wu Y T and Lee S C 2008 Appl. Phys. Lett. 93 263106
[6] Pralle M U, Moelders N, McNeal M P, Puscasu I, Greenwald A C, Daly J T, Johnson E A, George T, Choi D S, El-Kady I and Biswas R 2002 Appl. Phys. Lett. 81 4685
[7] Tsai M W, Chuang T H, Meng C Y, Chang Y T and Lee S C 2006 Appl. Phys. Lett. 89 173116
[8] Wang C M, Chang Y C, Abbas M N, Shih M H and Tsai D P 2009 Opt. Express 17 13526
[9] Zhu Y, Wang Y, Wan P F, Li H Y and Wang S Y 2012 Chin. Phys. Lett. 29 038103
[10] Liu A, Liu G X, Shan F K, Zhu H H, Shin B C, Lee W J and Cho C R 2013 Chin. Phys. Lett. 30 127301
[11] Chen L, Liu F X, Zhan P, Pan J and Wang Z L 2011 Chin. Phys. Lett. 28 057801
[12] Fang J F, Xuan Y M and Li Q 2011 Chin. Sci. Bull. 56 2156
[13] Wang L P, Lee B J, Wang X J and Zhang Z M 2009 Int. J. Heat Mass Transfer 52 3024
[14] Wang Z N and Liu D H 2009 Chin. Phys. Lett. 26 104204
[15] Zhao K H 2004 Optics (Beijing: Higher Education Press)
[16] Huang J, Xuan Y and Li Q 2011 J. Quant. Spectrosc. Radiat. Transfer 112 2592
[17] Taflove A and Hagness S C 2000 Computational Electrodynamics: the Finite-Difference Time-Domain Method 2nd edn (Boston: Artech House)
[18] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
[19] Zhang K Q and Li D J 2001 Theory for Microwaves and Optoelectronics (Beijing: Publishing House of Electronics Industry) (in Chinese)
Related articles from Frontiers Journals
[1] Xin Tong  and Daomu Zhao. Propagation Characteristics of Exponential-Cosine Gaussian Vortex Beams[J]. Chin. Phys. Lett., 2021, 38(8): 094207
[2] Zhong-Hua Qian, Zi-Han Ding, Ming-Zhong Ai, Yong-Xiang Zheng, Jin-Ming Cui, Yun-Feng Huang, Chuan-Feng Li, and Guang-Can Guo. Bayesian Optimization for Wavefront Sensing and Error Correction[J]. Chin. Phys. Lett., 2021, 38(6): 094207
[3] Yan-Ning Liu, Xiao-Long Weng, Peng Zhang, Wen-Xin Li, Yu Gong, Li Zhang, Tian-Cheng Han, Pei-Heng Zhou, and Long-Jiang Deng. Ultra-Broadband Infrared Metamaterial Absorber for Passive Radiative Cooling[J]. Chin. Phys. Lett., 2021, 38(3): 094207
[4] Peng Chen, Xianglin Kong, Jianfei Han, Weihua Wang, Kui Han, Hongyu Ma, Lei Zhao, and Xiaopeng Shen. Wide-Angle Ultra-Broadband Metamaterial Absorber with Polarization-Insensitive Characteristics[J]. Chin. Phys. Lett., 2021, 38(2): 094207
[5] Xue-Chun Zhao, Lei Zhang, Rong Lin, Shu-Qin Lin, Xin-Lei Zhu, Yang-Jian Cai, and Jia-Yi Yu. Hermite Non-Uniformly Correlated Array Beams and Its Propagation Properties[J]. Chin. Phys. Lett., 2020, 37(12): 094207
[6] Han Zhang, Chen Ming, Ke Yang, Hao Zeng, Shengbai Zhang, and Yi-Yang Sun. Chalcogenide Perovskite YScS$_{3}$ as a Potential p-Type Transparent Conducting Material[J]. Chin. Phys. Lett., 2020, 37(9): 094207
[7] Xinghong Zhu, Pengfei Zhao, and Huanyang Chen. Multi-Core Conformal Lenses[J]. Chin. Phys. Lett., 2020, 37(8): 094207
[8] Fei Xiang, Lin Zhang, Tao Chen, Yuan-Hong Zhong, Jin Li. Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams *[J]. Chin. Phys. Lett., 0, (): 094207
[9] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 0, (): 094207
[10] Fei Xiang, Lin Zhang, Tao Chen, Yuan-Hong Zhong, Jin Li. Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams[J]. Chin. Phys. Lett., 2020, 37(6): 094207
[11] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 2020, 37(6): 094207
[12] Shuai-Meng Wang, Xiao-Hong Sun, De-Li Chen, Fan Wu. GaP-Based High-Efficiency Elliptical Cylinder Metasurface in Visible Light[J]. Chin. Phys. Lett., 2020, 37(5): 094207
[13] Xuannan Wu, Guanwen Yuan, Rui Zhu, Jicheng Wang, Fuhua Gao, Feiliang Chen, Yidong Hou. Giant Broadband One Way Transmission Based on Directional Mie Scattering and Asymmetric Grating Diffraction Effects[J]. Chin. Phys. Lett., 2020, 37(4): 094207
[14] Zong-Cheng Xu, Liang Wu, Ya-Ting Zhang, De-Gang Xu, Jian-Quan Yao. Photoexcited Blueshift and Redshift Switchable Metamaterial Absorber at Terahertz Frequencies[J]. Chin. Phys. Lett., 2019, 36(12): 094207
[15] Si-Bo Hao, Zi-Li Zhang, Yuan-Yuan Ma, Meng-Yu Chen, Yang Liu, Hao-Chong Huang, Zhi-Yuan Zheng. Terahertz Lens Fabricated by Natural Dolomite[J]. Chin. Phys. Lett., 2019, 36(12): 094207
Viewed
Full text


Abstract