Chin. Phys. Lett.  2014, Vol. 31 Issue (09): 090201    DOI: 10.1088/0256-307X/31/9/090201
GENERAL |
Higher-Order Localized Waves in Coupled Nonlinear Schr?dinger Equations
WANG Xin1, YANG Bo2, CHEN Yong1**, YANG Yun-Qing2
1Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062
2School of Mathematics, Physics and Information Science, Zhejiang Ocean University, Zhoushan 316004
Cite this article:   
WANG Xin, YANG Bo, CHEN Yong et al  2014 Chin. Phys. Lett. 31 090201
Download: PDF(909KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Higher-order localized waves in coupled nonlinear Schr?dinger equations are investigated by the generalized Darboux transformation. We show that two dark-bright solitons together with a second-order rogue wave of fundamental or triangular pattern and two breathers together with a second-order rogue wave of fundamental or triangular pattern coexist in the second-order localized wave for the coupled system. Moreover, by increasing the value of one free parameter, the nonlinear waves in the second-order localized wave can merge with each other. The results further reveal the abundant dynamic behaviors of localized waves in coupled systems.
Published: 22 August 2014
PACS:  02.30.Ik (Integrable systems)  
  05.45.Yv (Solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/9/090201       OR      https://cpl.iphy.ac.cn/Y2014/V31/I09/090201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Xin
YANG Bo
CHEN Yong
YANG Yun-Qing
[1] Khaykovich L, Schreck F et al 2002 Science 296 1290
[2] Burger S, Bongs K et al 1999 Phys. Rev. Lett. 83 5198
[3] Ma Y C 1979 Stud. Appl. Math. 60 43
[4] Akhmediev N, Eleonskii V M and Kulagin N E 1987 Theor. Math. Phys. 72 183
[5] Peregrine D H and Austral J 1983 J. Aust. Math. Soc. Ser. B 25 16
[6] Akhmediev N, Ankiewicz A and Taki M 2009 Phys. Lett. A 373 675
[7] Akhmediev N, Ankiewicz A and Soto-Crespo J M 2009 Phys. Rev. E 80 026601
[8] Kedziora D J, Ankiewicz A and Akhmediev N 2011 Phys. Rev. E 84 056611
[9] He J S, Zhang H R, Wang L H, Porsezian K and Fokas A S 2013 Phys. Rev. E 87 052914
[10] Priya N V, Senthilvelan M and Lakshmanan M 2013 Phys. Rev. E 88 022918
[11] Bludov Y V, Konotop V V and Akhmediev N 2010 Eur. Phys. J. Spec. Top. 185 169
[12] Zhao L C and Liu J 2013 Phys. Rev. E 87 013201
[13] Baronio F, Conforti M, Degasperis A and Lombardo S 2013 Phys. Rev. Lett. 111 114101
[14] Baronio F, Degasperis A, Conforti M and Wabnitz S 2012 Phys. Rev. Lett. 109 044102
[15] Guo B L and Ling L M 2011 Chin. Phys. Lett. 28 110202
[16] Zhao L C and Liu J 2012 J. Opt. Soc. Am. B 29 3119
[17] Degasperis A and Lombardo S 2013 Phys. Rev. E 88 052914
[18] Wang X and Chen Y 2014 Chin. Phys. B 23 070203
[19] Mu G, Qin Z Y and Grimshaw R 2014 arXiv:1404.2988
[20] Tang D Y, Zhang H, Zhao L M and Wu X 2008 Phys. Rev. Lett. 101 153904
[21] Manakov S V 1973 Zh. Eksp. Teor. Fiz. 65 505
[22] Ling L M, Guo B L and Zhao L C 2014 Phys. Rev. E 89 041201
[23] Zhai B G, Zhang W G, Wang X L and Zhang H Q 2013 Nonlinear Anal.: Real World Appl. 14 14
[24] Qiao Z J and Zhao X Y 1991 Acta Inner Mongolia Nationality University 9 16
[25] Guo B L, Ling L M and Liu Q P 2012 Phys. Rev. E 85 026607
[26] Guo B L, Ling L M and Liu Q P 2013 Stud. Appl. Math. 130 317
[27] Yang B, Zhang W G, Zhang H Q and Pei S B 2013 Phys. Scr. 88 065004
[28] Wang X, Li Y Q and Chen Y 2013 Commun. Nonlinear Sci. Numer. Simul. (accepted) arXiv:1312.6479
[29] Gu C H, Hu H S and Zhou Z X 2005 Darboux Transformations in Integrable Systems: Theory and Their Applications to Geometry (New York: Springer-Verlag)
[30] Matveev V B and Salle M A 1991 Darboux Transformations and Solitons (Berlin: Springer-Verlag)
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 090201
[2] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 090201
[3] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 090201
[4] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 090201
[5] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 090201
[6] Yusong Cao and Junpeng Cao. Exact Solution of a Non-Hermitian Generalized Rabi Model[J]. Chin. Phys. Lett., 2021, 38(8): 090201
[7] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 090201
[8] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 090201
[9] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 090201
[10] Danda Zhang, Da-Jun Zhang, Sen-Yue Lou. Lax Pairs of Integrable Systems in Bidifferential Graded Algebras[J]. Chin. Phys. Lett., 2020, 37(4): 090201
[11] Yu-Han Wu, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Breather Interaction Properties Induced by Self-Steepening and Space-Time Correction[J]. Chin. Phys. Lett., 2020, 37(4): 090201
[12] Bao Wang, Zhao Zhang, Biao Li. Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2020, 37(3): 090201
[13] Zhao Zhang, Shu-Xin Yang, Biao Li. Soliton Molecules, Asymmetric Solitons and Hybrid Solutions for (2+1)-Dimensional Fifth-Order KdV Equation[J]. Chin. Phys. Lett., 2019, 36(12): 090201
[14] Zhou-Zheng Kang, Tie-Cheng Xia. Construction of Multi-soliton Solutions of the $N$-Coupled Hirota Equations in an Optical Fiber[J]. Chin. Phys. Lett., 2019, 36(11): 090201
[15] Yong-Shuai Zhang, Jing-Song He. Bound-State Soliton Solutions of the Nonlinear Schr?dinger Equation and Their Asymmetric Decompositions[J]. Chin. Phys. Lett., 2019, 36(3): 090201
Viewed
Full text


Abstract