GENERAL |
|
|
|
|
Higher-Order Localized Waves in Coupled Nonlinear Schr?dinger Equations |
WANG Xin1, YANG Bo2, CHEN Yong1**, YANG Yun-Qing2 |
1Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062 2School of Mathematics, Physics and Information Science, Zhejiang Ocean University, Zhoushan 316004
|
|
Cite this article: |
WANG Xin, YANG Bo, CHEN Yong et al 2014 Chin. Phys. Lett. 31 090201 |
|
|
Abstract Higher-order localized waves in coupled nonlinear Schr?dinger equations are investigated by the generalized Darboux transformation. We show that two dark-bright solitons together with a second-order rogue wave of fundamental or triangular pattern and two breathers together with a second-order rogue wave of fundamental or triangular pattern coexist in the second-order localized wave for the coupled system. Moreover, by increasing the value of one free parameter, the nonlinear waves in the second-order localized wave can merge with each other. The results further reveal the abundant dynamic behaviors of localized waves in coupled systems.
|
|
Published: 22 August 2014
|
|
|
|
|
|
[1] Khaykovich L, Schreck F et al 2002 Science 296 1290 [2] Burger S, Bongs K et al 1999 Phys. Rev. Lett. 83 5198 [3] Ma Y C 1979 Stud. Appl. Math. 60 43 [4] Akhmediev N, Eleonskii V M and Kulagin N E 1987 Theor. Math. Phys. 72 183 [5] Peregrine D H and Austral J 1983 J. Aust. Math. Soc. Ser. B 25 16 [6] Akhmediev N, Ankiewicz A and Taki M 2009 Phys. Lett. A 373 675 [7] Akhmediev N, Ankiewicz A and Soto-Crespo J M 2009 Phys. Rev. E 80 026601 [8] Kedziora D J, Ankiewicz A and Akhmediev N 2011 Phys. Rev. E 84 056611 [9] He J S, Zhang H R, Wang L H, Porsezian K and Fokas A S 2013 Phys. Rev. E 87 052914 [10] Priya N V, Senthilvelan M and Lakshmanan M 2013 Phys. Rev. E 88 022918 [11] Bludov Y V, Konotop V V and Akhmediev N 2010 Eur. Phys. J. Spec. Top. 185 169 [12] Zhao L C and Liu J 2013 Phys. Rev. E 87 013201 [13] Baronio F, Conforti M, Degasperis A and Lombardo S 2013 Phys. Rev. Lett. 111 114101 [14] Baronio F, Degasperis A, Conforti M and Wabnitz S 2012 Phys. Rev. Lett. 109 044102 [15] Guo B L and Ling L M 2011 Chin. Phys. Lett. 28 110202 [16] Zhao L C and Liu J 2012 J. Opt. Soc. Am. B 29 3119 [17] Degasperis A and Lombardo S 2013 Phys. Rev. E 88 052914 [18] Wang X and Chen Y 2014 Chin. Phys. B 23 070203 [19] Mu G, Qin Z Y and Grimshaw R 2014 arXiv:1404.2988 [20] Tang D Y, Zhang H, Zhao L M and Wu X 2008 Phys. Rev. Lett. 101 153904 [21] Manakov S V 1973 Zh. Eksp. Teor. Fiz. 65 505 [22] Ling L M, Guo B L and Zhao L C 2014 Phys. Rev. E 89 041201 [23] Zhai B G, Zhang W G, Wang X L and Zhang H Q 2013 Nonlinear Anal.: Real World Appl. 14 14 [24] Qiao Z J and Zhao X Y 1991 Acta Inner Mongolia Nationality University 9 16 [25] Guo B L, Ling L M and Liu Q P 2012 Phys. Rev. E 85 026607 [26] Guo B L, Ling L M and Liu Q P 2013 Stud. Appl. Math. 130 317 [27] Yang B, Zhang W G, Zhang H Q and Pei S B 2013 Phys. Scr. 88 065004 [28] Wang X, Li Y Q and Chen Y 2013 Commun. Nonlinear Sci. Numer. Simul. (accepted) arXiv:1312.6479 [29] Gu C H, Hu H S and Zhou Z X 2005 Darboux Transformations in Integrable Systems: Theory and Their Applications to Geometry (New York: Springer-Verlag) [30] Matveev V B and Salle M A 1991 Darboux Transformations and Solitons (Berlin: Springer-Verlag) |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|