Chin. Phys. Lett.  2014, Vol. 31 Issue (07): 070503    DOI: 10.1088/0256-307X/31/7/070503
GENERAL |
Phase Transitions of Ferromagnetic Potts Models on the Simple Cubic Lattice
WANG Shun1, XIE Zhi-Yuan1, CHEN Jing1, Bruce Normand2, XIANG Tao1**
1Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2Department of Physics, Renmin University of China, Beijing 100872
Cite this article:   
WANG Shun, XIE Zhi-Yuan, CHEN Jing et al  2014 Chin. Phys. Lett. 31 070503
Download: PDF(628KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the 2- and 3-state ferromagnetic Potts models on the simple cubic lattice using the tensor renormalization group method with higher-order singular value decomposition (HOTRG). HOTRG works in the thermodynamic limit, where we use the Zq symmetry of the model, combined with a new measure for detecting the transition, to improve the accuracy of the critical point for the 2-state model by two orders of magnitude, obtaining Tc=4.51152469(1). The 3-state model is far more complex, and we improve the overall understanding of this case by calculating its thermodynamic quantities with high accuracy. Our results verify that the first-order nature of the phase transition and the HOTRG transition temperature benchmarks the most recent Monte Carlo result.
Published: 30 June 2014
PACS:  05.10.Cc (Renormalization group methods)  
  75.10.Hk (Classical spin models)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/7/070503       OR      https://cpl.iphy.ac.cn/Y2014/V31/I07/070503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Shun
XIE Zhi-Yuan
CHEN Jing
Bruce Normand
XIANG Tao
[1] Potts R B 1952 Proc. Cambridge. Philos. Soc. 48 106
[2] Wu F Y 1982 Rev. Mod. Phys. 54 235
[3] Svetitsky B and Yaffe L G 1982 Nucl. Phys. B 210 423
[4] Berg B A, Meyer-Ortmanns H and Velytsky A 2004 Phys. Rev. D 70 054505
[5] Bazavov A and Berg B A 2007 Phys. Rev. D 75 094506
[6] Banavar J R, Grest G S and Jasnow D 1980 Phys. Rev. Lett. 45 1424
Banavar J R, Grest G S and Jasnow D 1982 Phys. Rev. B 25 4639
[7] Ueno Y, Sun G and Ono I 1989 J. Phys. Soc. Jpn. 58 1162
[8] Wang J S, Swendsen R H and Kotecky R 1989 Phys. Rev. Lett. 63 109
Wang J S, Swendsen R H and Kotecky R 1990 Phys. Rev. B 42 2465
[9] Rosengren A and Lapinskas S 1993 Phys. Rev. Lett. 71 165
[10] Ditzian R V and Oitmaa J 1974 J. Phys. A 7 L61
[11] Straley J P 1974 J. Phys. A 7 2173
[12] Enting I G 1974 J. Phys. A 7 1617
[13] Herrmann H J 1979 Z. Phys. B 35 171
[14] Blote H W J and Swendsen R H 1979 Phys. Rev. Lett. 43 799
[15] Jensen S J K and Mouritsen O G 1979 Phys. Rev. Lett. 43 1736
[16] Fukugita M and Okawa M 1989 Phys. Rev. Lett. 63 13
[17] Lee J and Kosterlitz J M 1991 Phys. Rev. B 43 1268
[18] Janke W and Villanova R 1997 Nucl. Phys. B 489 679
[19] Nishino T, Okunishi K, Hieida Y, Maeshima N and Akutsu Y 2000 Nucl. Phys. B 575 504
Gendiar A and Nishino T 2002 Phys. Rev. E 65 046702
[20] Bazavov A, Berg B A and Dubey S 2008 Nucl. Phys. B 802 421
[21] Levin M and Nave C P 2007 Phys. Rev. Lett. 99 120601
[22] Xie Z Y, Jiang H C, Chen Q N, Weng Z Y and Xiang T 2009 Phys. Rev. Lett. 103 160601
[23] Zhao H H, Xie Z Y, Chen Q N, Wei Z C, Cai J W and Xiang T 2010 Phys. Rev. B 81 174411
[24] Xie Z Y, Chen J, Qin M P, Zhu J W, Yang L P and Xiang T 2012 Phys. Rev. B 86 045139
[25] White S R 1992 Phys. Rev. Lett. 69 2863
[26] Chen Q N, Qin M P, Chen J, Wei Z C, Zhao H H, Normand B and Xiang T 2011 Phys. Rev. Lett. 107 165701
[27] Meurice Y 2013 Phys. Rev. B 87 064422
[28] Efrati E, Wang Z, Kolan A and Kadanoff L P 2013 arXiv:1301.6323v1[cond-mat.stat-mech]
[29] Yu J F, Xie Z Y, Meurice Y, Liu Y, Denbleyker A, Zou H, Qin M P, Chen J and Xiang T 2014 Phys. Rev. E 89 013308
[30] Liu Y, Meurice Y, Qin M P, Yockey J U, Xiang T, Xie Z Y, Yu J F and Zou H 2013 Phys. Rev. D 88 056005
[31] Denbleyker A, Liu Y, Meurice Y, Qin M P, Xiang T, Xie Z Y, Yu J F and Zou H 2014 Phys. Rev. D 89 016008
[32] Jiang H C, Weng Z Y and Xiang T 2008 Phys. Rev. Lett. 101 090603
[33] Gu Z C, Levin M and Wen X G 2008 Phys. Rev. B 78 205116
[34] Zhao H H, Xu C, Chen Q N, Wei Z C, Qin M P, Zhang G M and Xiang T 2012 Phys. Rev. B 85 134416
[35] Xie Z Y, Chen J, Yu J F, Kong X, Normand B and Xiang T 2014 Phys. Rev. X 4 011025
[36] de Lathauwer L, de Moor B and Vandewalle J 2000 SIAM J. Matrix Anal. Appl. 21 1253
[37] Gu Z C and Wen X G 2009 Phys. Rev. B 80 155131
[38] Nishino T, Hieida Y, Okunishi K, Maeshima N, Akutsu Y and Gendiar A 2001 Prog. Theor. Phys. 105 409
[39] Gendiar A and Nishino T 2005 Phys. Rev. B 71 024404
[40] Chung S G 2006 Phys. Lett. A 359 707
[41] Butera P and Comi M 2000 Phys. Rev. B 62 14837
[42] Gupta R and Tamayo P 1996 Int. J. Mod. Phys. C 7 305
[43] Deng Y J and Blote H W J 2003 Phys. Rev. E 68 036125
[44] Hasenbusch M 2010 Phys. Rev. B 82 174433
[45] Ono I and Ito K 1982 J. Phys. C 15 4417
[46] Wilson W G and Vanse C A 1987 Phys. Rev. B 36 587
[47] Alves N A, Berg B A and Villanova R 1991 Phys. Rev. B 43 5846
[48] Miyashita R, Betts D D and Elliott C J 1979 J. Phys. A 12 1605
Related articles from Frontiers Journals
[1] Xi-Ci Yang, Z. Y. Xie, and Xiao-Tao Yang. Exploring Explicit Coarse-Grained Structure in Artificial Neural Networks[J]. Chin. Phys. Lett., 2023, 40(2): 070503
[2] Teng Liu, Gao-Ke Hu, Jia-Qi Dong, Jing-Fang Fan, Mao-Xin Liu, and Xiao-Song Chen. Renormalization Group Theory of Eigen Microstates[J]. Chin. Phys. Lett., 2022, 39(8): 070503
[3] X. F. Liu, Y. F. Fu, W. Q. Yu, J. F. Yu, and Z. Y. Xie. Variational Corner Transfer Matrix Renormalization Group Method for Classical Statistical Models[J]. Chin. Phys. Lett., 2022, 39(6): 070503
[4] Zhen Ning, Bo Fu, Qinwei Shi, and Xiaoping Wang. Universal Minimum Conductivity in Disordered Double-Weyl Semimetal[J]. Chin. Phys. Lett., 2020, 37(11): 070503
[5] Jing Chen, Hai-Jun Liao, Hai-Dong Xie, Xing-Jie Han, Rui-Zhen Huang, Song Cheng, Zhong-Chao Wei, Zhi-Yuan Xie, Tao Xiang. Phase Transition of the q-State Clock Model: Duality and Tensor Renormalization[J]. Chin. Phys. Lett., 2017, 34(5): 070503
[6] ZHOU Zong-Li, LI Min, YE Jian, LI Dong-Peng, LOU Ping, ZHANG Guo-Shun. The Heisenberg Model after an Interaction Quench[J]. Chin. Phys. Lett., 2014, 31(10): 070503
[7] MA Yong-Jun, WANG Jia-Xiang, XU Xin-Ye, WEI Qi, Sabre Kais. Error Analysis of the Density-Matrix Renormalization Group Algorithm for a Chain of Harmonic Oscillators[J]. Chin. Phys. Lett., 2014, 31(06): 070503
[8] WANG Xiao-Hong**, ZHOU Quan . Renormalization Group Analysis of Weakly Rotating Turbulent Flows[J]. Chin. Phys. Lett., 2011, 28(12): 070503
[9] WANG Meng-Xiong, CAI Jian-Wei, XIE Zhi-Yuan, CHEN Qiao-Ni, ZHAO Hui-Hai, WEI Zhong-Chao. Investigation of the Potts Model on Triangular Lattices by the Second Renormalization of Tensor Network States[J]. Chin. Phys. Lett., 2010, 27(7): 070503
[10] TU Tao, WANG Lin-Jun, HAO Xiao-Jie, GUO Guang-Can, GUO Guo-Ping. Renormalization Group Method for Soliton Evolution in a Perturbed KdV Equation[J]. Chin. Phys. Lett., 2009, 26(6): 070503
[11] LIU Zheng-Feng, WANG Xiao-Hong,. Derivation of a Nonlinear Reynolds Stress Model Using Renormalization Group Analysis and Two-Scale Expansion Technique[J]. Chin. Phys. Lett., 2008, 25(2): 070503
Viewed
Full text


Abstract