GENERAL |
|
|
|
|
The Fermion Representation of Quantum Toroidal Algebra on 3D Young Diagrams |
CAI Li-Qiang1, WANG Li-Fang2**, WU Ke2, YANG Jie2 |
1Department of Mathematics, Jilin University, Changchun 130012 2School of Mathematical Sciences, Capital Normal University, Beijing 100048
|
|
Cite this article: |
CAI Li-Qiang, WANG Li-Fang, WU Ke et al 2014 Chin. Phys. Lett. 31 070502 |
|
|
Abstract We develop an equivalence between the diagonal slices and the perpendicular slices of 3D Young diagrams via Maya diagrams. Furthermore, we construct the fermion representation of quantum toroidal algebra on the 3D Young diagrams perpendicularly sliced.
|
|
Published: 30 June 2014
|
|
PACS: |
05.30.Fk
|
(Fermion systems and electron gas)
|
|
11.25.Hf
|
(Conformal field theory, algebraic structures)
|
|
71.10.Fd
|
(Lattice fermion models (Hubbard model, etc.))
|
|
|
|
|
[1] Miki K 2007 J. Math. Phys. 48 123520 [2] Feigin B, Feigin E, Jimbo M, Miwa T and Mukhin E 2010 arXiv:1002.3100 [math.QA] [3] Schiffmann O and Vasserot E 2013 Duke Math. J. 162 279 [4] Feigin B and Tsymbaliuk A 2011 Kyoto J. Math. 51 831 [5] Awata H, Feigin B and Shiraishi J 2012 J. High Energy Phys. 1203 041 [6] Feigin B, Jimbo M, Miwa T and Mukhin E 2012 Kyoto J. Math. 52 621 [7] Cai L Q, Wang L F, Wu K and Yang J 2013 Chin. Phys. Lett. 30 020306 [8] Okounkov A and Reshetikhin N 2003 J. Am. Math. Soc. 16 581 [9] Aganagic M, Klemm A, Mari?o M and Vafa C 2005 Commun. Math. Phys. 254 425 [10] Jimbo M, Miwa T and Date E 2000 Solitons: Differential Equations, Symmetries and Infinite Dimension Algebras (Cambridge: Cambridge University Press) [11] Macdonald I G 1995 Symmetric Functions and Hall Polynomials (Oxford: Oxford University Press) [12] Cai L Q, Wang L F, Wu K and Yang J 2014 Commun. Theor. Phys. 61 403 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|