Chin. Phys. Lett.  2014, Vol. 31 Issue (07): 070502    DOI: 10.1088/0256-307X/31/7/070502
GENERAL |
The Fermion Representation of Quantum Toroidal Algebra on 3D Young Diagrams
CAI Li-Qiang1, WANG Li-Fang2**, WU Ke2, YANG Jie2
1Department of Mathematics, Jilin University, Changchun 130012
2School of Mathematical Sciences, Capital Normal University, Beijing 100048
Cite this article:   
CAI Li-Qiang, WANG Li-Fang, WU Ke et al  2014 Chin. Phys. Lett. 31 070502
Download: PDF(469KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We develop an equivalence between the diagonal slices and the perpendicular slices of 3D Young diagrams via Maya diagrams. Furthermore, we construct the fermion representation of quantum toroidal algebra on the 3D Young diagrams perpendicularly sliced.
Published: 30 June 2014
PACS:  05.30.Fk (Fermion systems and electron gas)  
  11.25.Hf (Conformal field theory, algebraic structures)  
  71.10.Fd (Lattice fermion models (Hubbard model, etc.))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/7/070502       OR      https://cpl.iphy.ac.cn/Y2014/V31/I07/070502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CAI Li-Qiang
WANG Li-Fang
WU Ke
YANG Jie
[1] Miki K 2007 J. Math. Phys. 48 123520
[2] Feigin B, Feigin E, Jimbo M, Miwa T and Mukhin E 2010 arXiv:1002.3100 [math.QA]
[3] Schiffmann O and Vasserot E 2013 Duke Math. J. 162 279
[4] Feigin B and Tsymbaliuk A 2011 Kyoto J. Math. 51 831
[5] Awata H, Feigin B and Shiraishi J 2012 J. High Energy Phys. 1203 041
[6] Feigin B, Jimbo M, Miwa T and Mukhin E 2012 Kyoto J. Math. 52 621
[7] Cai L Q, Wang L F, Wu K and Yang J 2013 Chin. Phys. Lett. 30 020306
[8] Okounkov A and Reshetikhin N 2003 J. Am. Math. Soc. 16 581
[9] Aganagic M, Klemm A, Mari?o M and Vafa C 2005 Commun. Math. Phys. 254 425
[10] Jimbo M, Miwa T and Date E 2000 Solitons: Differential Equations, Symmetries and Infinite Dimension Algebras (Cambridge: Cambridge University Press)
[11] Macdonald I G 1995 Symmetric Functions and Hall Polynomials (Oxford: Oxford University Press)
[12] Cai L Q, Wang L F, Wu K and Yang J 2014 Commun. Theor. Phys. 61 403
Related articles from Frontiers Journals
[1] Xue-Jing Feng, Lan Yin. Phase Diagram of a Spin-Orbit Coupled Dipolar Fermi Gas at T=0K[J]. Chin. Phys. Lett., 2020, 37(2): 070502
[2] Ya-Dong Song, Xiao-Ming Cai. Properties of One-Dimensional Highly Polarized Fermi Gases[J]. Chin. Phys. Lett., 2018, 35(11): 070502
[3] Yi-Cong Yu, Xi-Wen Guan. A Unified Approach to the Thermodynamics and Quantum Scaling Functions of One-Dimensional Strongly Attractive $SU(w)$ Fermi Gases[J]. Chin. Phys. Lett., 2017, 34(7): 070502
[4] Ya-Hui Wang, Zhong-Qi Ma. Spin-1/2 Fermion Gas in One-Dimensional Harmonic Trap with Attractive Delta Function Interaction[J]. Chin. Phys. Lett., 2017, 34(2): 070502
[5] Xiao-Xia Ruan, Hao Gong, Yuan-Mei Shi , Hong-Shi Zong. Specific Heat of a Unitary Fermi Gas Including Particle-Hole Fluctuation[J]. Chin. Phys. Lett., 2016, 33(11): 070502
[6] Bei-Bing Huang. A Realistic Model for Observing Spin-Balanced Fulde–Ferrell Superfluid in Honeycomb Lattices[J]. Chin. Phys. Lett., 2016, 33(08): 070502
[7] CHEN Ke-Ji, ZHANG Wei. Nematic Ferromagnetism on the Lieb Lattice[J]. Chin. Phys. Lett., 2014, 31(11): 070502
[8] CAI Li-Qiang, WANG Li-Fang, WU Ke, YANG Jie. Diagonal Slices of 3D Young Diagrams in the Approach of Maya Diagrams[J]. Chin. Phys. Lett., 2014, 31(09): 070502
[9] LUAN Tian, JIA Tao, CHEN Xu-Zong, MA Zhao-Yuan. Optimized Degenerate Bose–Fermi Mixture in Microgravity: DSMC Simulation of Sympathetic Cooling[J]. Chin. Phys. Lett., 2014, 31(04): 070502
[10] ZHU Hua-Xin, WANG Tong-Tong, GAO Jin-Song, LI Shuai, SUN Ya-Jun, LIU Gui-Lin. Floquet Topological Insulator in the BHZ Model with the Polarized Optical Field[J]. Chin. Phys. Lett., 2014, 31(03): 070502
[11] CHEN Yan, ZHANG Ke-Zhi, WANG Xiao-Liang, CHEN Yong. Ground-State Properties of Superfluid Fermi Gas in Fourier-Synthesized Optical Lattices[J]. Chin. Phys. Lett., 2014, 31(03): 070502
[12] RUAN Xiao-Xia, GONG Hao, DU Long, JIANG Yu, SUN Wei-Min, ZONG Hong-Shi. Radio-Frequency Spectra of Ultracold Fermi Gases Including a Generalized GMB Approximation at Unitarity[J]. Chin. Phys. Lett., 2013, 30(11): 070502
[13] WANG Ya-Hui, and MA Zhong-Qi. Ground State Energy of 1D Attractive δ-Function Interacting Fermi Gas[J]. Chin. Phys. Lett., 2012, 29(8): 070502
[14] WEI Bo-Bo* . One-Dimensional w-Component Fermions and Bosons with Delta Function Interaction[J]. Chin. Phys. Lett., 2011, 28(9): 070502
[15] C. N. YANG, **, YOU Yi-Zhuang . One-Dimensional w-Component Fermions and Bosons with Repulsive Delta Function Interaction[J]. Chin. Phys. Lett., 2011, 28(2): 070502
Viewed
Full text


Abstract