Chin. Phys. Lett.  2014, Vol. 31 Issue (06): 067803    DOI: 10.1088/0256-307X/31/6/067803
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Near-Infrared Properties of Hybridized Plasmonic Rectangular Split Nanorings
LIAO Zhong-Wei1,2, HUANG Ying-Zhou1,2**, WANG Xiao-Yong1,2**, CHAU Irene Yeung-Yeung3, WANG Shu-Xia1,2, WEN Wei-Jia3
1Soft Matter and Interdisciplinary Research Institute, College of Physics, Chongqing University, Chongqing 401331
2Department of Applied Physics, College of Physics, Chongqing University, Chongqing 401331
3Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
Cite this article:   
LIAO Zhong-Wei, HUANG Ying-Zhou, WANG Xiao-Yong et al  2014 Chin. Phys. Lett. 31 067803
Download: PDF(2161KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The near-infrared properties of gold rectangular split nanorings (RSNs) are investigated by simulation using the finite element method. In the results, the distribution and enhancement of electromagnetic (EM) fields are confirmed by the distribution of charge and current density. The spectrum variation with split distance of RSNs in absorption is in accordance with the hybridization theory. The influence of split distance and light wavelength on the enhancement of EM field is also studied for devices that make use of surface plasmon resonance in near-infrared, such as in optical trapping, biomedicine, and solar energy. Additionally, the spectra in mediums with various refractive indices suggest the potential application of the hybridized plasmonic RSNs as an ultra-sensitive sensor in the near-infrared region.
Published: 26 May 2014
PACS:  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/6/067803       OR      https://cpl.iphy.ac.cn/Y2014/V31/I06/067803
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIAO Zhong-Wei
HUANG Ying-Zhou
WANG Xiao-Yong
CHAU Irene Yeung-Yeung
WANG Shu-Xia
WEN Wei-Jia
[1] Ozbay E 2006 Science 311 189
[2] Halas N J, Lal S, Chang W S, Link S and Nordlander P 2011 Chem. Rev. 111 3913
[3] Heng H, Yang L and Ye Y H 2014 Chin. Phys. Lett. 31 018101
[4] Xu H X, Bjerneld E J, Kall M and Borjesson L 1999 Phys. Rev. Lett. 83 4357
[5] Kall M 2012 Nat. Mater. 11 570
[6] Hirsch L R, Stafford R J, Bankson J A, Sershen S R, Rivera B, Price R E, Hazle J D, Halas N J and West J L 2003 Proc. Natl. Acad. Sci. USA 100 13549
[7] Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G and Zhang X 2009 Nature 461 629
[8] Lezec H J, Degiron A, Devaux E, Linke R A, Martin-Moreno L, Garcia-Vidal F J and Ebbesen T W 2002 Science 297 820
[9] Li H, Li W, Du J J, Wu A M, Qiu C, Sheng Z, Wang X, Zou S C and Gan F W 2013 Chin. Phys. B 22 117807
[10] Sun S, Yang K Y, Wang C M, Juan T K, Chen W T, Liao C Y, He Q, Xiao S, Kung W T, Guo G Y, Zhou L and Tsai D P 2012 Nano Lett. 12 6223
[11] Huang Y Z and Dong B 2012 Sci. Chin. Chem. 55 2567
[12] Mubeen S, Lee J, Singh N, Kramer S, Stucky G D and Moskovits M 2013 Nat. Nanotechnol. 8 247
[13] Bai Y M, Wang J, Chen N F, Yao J X, Zhang X W, Yin Z G, Zhang H and Huang T M 2011 Chin. Phys. Lett. 28 087306
[14] Sun M T, Huang Y Z, Xia L X, Chen X W and Xu H X 2011 J. Phys. Chem. C 115 9629
[15] Anderson L J E, Payne C M, Zhen Y R, Nordlander P and Hafner J H 2011 Nano Lett. 11 5034
[16] Alexander K D, Skinner K, Zhang S, Wei H and Lopez R 2010 Nano Lett. 10 4488
[17] Zhang W, Li Z, Guan Z, Shen H, Yu W, He W, Yan X, Li P and Xu H 2012 Chin. Sci. Bull. 57 68
[18] Langhammer C, Schwind M, Kasemo B and Zoric I 2008 Nano Lett. 8 1461
[19] Lorente-Crespo M, Wang L, Ortuno R, Garcia-Meca C, Ekinci Y and Martinez A 2013 Nano Lett. 13 2654
[20] Stanley R 2012 Nat. Photon. 6 409
[21] Baffou G, Girard C and Quidant R 2010 Phys. Rev. Lett. 104 136805
[22] Dionne J A 2013 Nat. Mater. 12 380
[23] Coppens Z J, Li W, Walker D G and Valentine J G 2013 Nano Lett. 13 1023
[24] Ou J Y, Plum E, Zhang J and Zheludev N I 2013 Nat. Nanotechnol. 8 252
[25] Tan H, Santbergen R, Smets A H and Zeman M 2012 Nano Lett. 12 4070
[26] Chen Z Q, Qi J W, Chen J, Li Y D, Hao Z Q, Lu W Q, Xu J J and Sun Q 2013 Chin. Phys. Lett. 30 057301
[27] Zhao J, Zhang C, Braun P V and Giessen H 2012 Adv. Opt. Mater. 24 247
[28] Zheludev N I, Prosvirnin S L, Papasimakis N and Fedotov V A 2008 Nat. Photon. 2 351
[29] Wu C H, Khanikaev A B, Adato R, Arju N, Yanik A A, Altug H and Shvets G 2011 Nat. Mater. 11 69
[30] Prodan E, Radloff C, Halas N J and Nordlander P 2003 Science 302 419
[31] Fang Y R and Huang Y Z 2013 Appl. Phys. Lett. 102 153108
[32] Mayer K M and Hafner J H 2011 Chem. Rev. 111 3828
Related articles from Frontiers Journals
[1] Xiang Xiong, Zhao-Yuan Zeng, Ruwen Peng, and Mu Wang. Directional Chiral Optical Emission by Electron-Beam-Excited Nano-Antenna[J]. Chin. Phys. Lett., 2023, 40(1): 067803
[2] Pei-Chao Cao, Yu-Gui Peng, Ying Li, and Xue-Feng Zhu. Phase-Locking Diffusive Skin Effect[J]. Chin. Phys. Lett., 2022, 39(5): 067803
[3] Peng Chen, Xianglin Kong, Jianfei Han, Weihua Wang, Kui Han, Hongyu Ma, Lei Zhao, and Xiaopeng Shen. Wide-Angle Ultra-Broadband Metamaterial Absorber with Polarization-Insensitive Characteristics[J]. Chin. Phys. Lett., 2021, 38(2): 067803
[4] Quan-Wen Hou, Jia-Chi Li , and Xiao-Peng Zhao . Isotropic Thermal Cloaks with Thermal Manipulation Function[J]. Chin. Phys. Lett., 2021, 38(1): 067803
[5] Xueyan Li, Han Lin, Yuejin Zhao, and Baohua Jia. Diffraction-Limited Imaging with a Graphene Metalens[J]. Chin. Phys. Lett., 2020, 37(10): 067803
[6] Yanyan Cao, Bocheng Yu, Yangyang Fu, Lei Gao, and Yadong Xu. Phase-Gradient Metasurfaces Based on Local Fabry–Pérot Resonances[J]. Chin. Phys. Lett., 2020, 37(9): 067803
[7] Zhenyu Fang , Haofei Xu , Yaqin Zheng , Yuelin Chen , and Zhang-Kai Zhou. Multiplexed Metasurfaces for High-Capacity Printing Imaging[J]. Chin. Phys. Lett., 2020, 37(7): 067803
[8] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 0, (): 067803
[9] Chen Huang , Qian-Ju Song , Peng Hu , Shi-Wei Dai , Hong Xiang, Dezhuan Han. Bound States in the Continuum in One-Dimensional Dimerized Plasmonic Gratings *[J]. Chin. Phys. Lett., 0, (): 067803
[10] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 2020, 37(6): 067803
[11] Chen Huang , Qian-Ju Song , Peng Hu , Shi-Wei Dai , Hong Xiang, Dezhuan Han. Bound States in the Continuum in One-Dimensional Dimerized Plasmonic Gratings[J]. Chin. Phys. Lett., 2020, 37(6): 067803
[12] Shuai-Meng Wang, Xiao-Hong Sun, De-Li Chen, Fan Wu. GaP-Based High-Efficiency Elliptical Cylinder Metasurface in Visible Light[J]. Chin. Phys. Lett., 2020, 37(5): 067803
[13] Bin Sun, Fei-Feng Xie, Shuai Kang, You-chang Yang, Jian-Qiang Liu. A Novel Method for PIT Effects Based on Plasmonic Decoupling[J]. Chin. Phys. Lett., 2019, 36(1): 067803
[14] Hao-Jing Zhang, Gai-Ge Zheng, Yun-Yun Chen, Xiu-Juan Zou, Lin-Hua Xu. A Perfect Graphene Absorber with Waveguide Coupled High-Contrast Gratings[J]. Chin. Phys. Lett., 2018, 35(3): 067803
[15] Ren-Xia Ning, Zheng Jiao, Jie Bao. Narrow and Dual-Band Tunable Absorption of a Composite Structure with a Graphene Metasurface[J]. Chin. Phys. Lett., 2017, 34(10): 067803
Viewed
Full text


Abstract