CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Near-Infrared Properties of Hybridized Plasmonic Rectangular Split Nanorings |
LIAO Zhong-Wei1,2, HUANG Ying-Zhou1,2**, WANG Xiao-Yong1,2**, CHAU Irene Yeung-Yeung3, WANG Shu-Xia1,2, WEN Wei-Jia3 |
1Soft Matter and Interdisciplinary Research Institute, College of Physics, Chongqing University, Chongqing 401331 2Department of Applied Physics, College of Physics, Chongqing University, Chongqing 401331 3Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
|
|
Cite this article: |
LIAO Zhong-Wei, HUANG Ying-Zhou, WANG Xiao-Yong et al 2014 Chin. Phys. Lett. 31 067803 |
|
|
Abstract The near-infrared properties of gold rectangular split nanorings (RSNs) are investigated by simulation using the finite element method. In the results, the distribution and enhancement of electromagnetic (EM) fields are confirmed by the distribution of charge and current density. The spectrum variation with split distance of RSNs in absorption is in accordance with the hybridization theory. The influence of split distance and light wavelength on the enhancement of EM field is also studied for devices that make use of surface plasmon resonance in near-infrared, such as in optical trapping, biomedicine, and solar energy. Additionally, the spectra in mediums with various refractive indices suggest the potential application of the hybridized plasmonic RSNs as an ultra-sensitive sensor in the near-infrared region.
|
|
Published: 26 May 2014
|
|
PACS: |
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
81.05.Xj
|
(Metamaterials for chiral, bianisotropic and other complex media)
|
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
|
|
|
[1] Ozbay E 2006 Science 311 189 [2] Halas N J, Lal S, Chang W S, Link S and Nordlander P 2011 Chem. Rev. 111 3913 [3] Heng H, Yang L and Ye Y H 2014 Chin. Phys. Lett. 31 018101 [4] Xu H X, Bjerneld E J, Kall M and Borjesson L 1999 Phys. Rev. Lett. 83 4357 [5] Kall M 2012 Nat. Mater. 11 570 [6] Hirsch L R, Stafford R J, Bankson J A, Sershen S R, Rivera B, Price R E, Hazle J D, Halas N J and West J L 2003 Proc. Natl. Acad. Sci. USA 100 13549 [7] Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G and Zhang X 2009 Nature 461 629 [8] Lezec H J, Degiron A, Devaux E, Linke R A, Martin-Moreno L, Garcia-Vidal F J and Ebbesen T W 2002 Science 297 820 [9] Li H, Li W, Du J J, Wu A M, Qiu C, Sheng Z, Wang X, Zou S C and Gan F W 2013 Chin. Phys. B 22 117807 [10] Sun S, Yang K Y, Wang C M, Juan T K, Chen W T, Liao C Y, He Q, Xiao S, Kung W T, Guo G Y, Zhou L and Tsai D P 2012 Nano Lett. 12 6223 [11] Huang Y Z and Dong B 2012 Sci. Chin. Chem. 55 2567 [12] Mubeen S, Lee J, Singh N, Kramer S, Stucky G D and Moskovits M 2013 Nat. Nanotechnol. 8 247 [13] Bai Y M, Wang J, Chen N F, Yao J X, Zhang X W, Yin Z G, Zhang H and Huang T M 2011 Chin. Phys. Lett. 28 087306 [14] Sun M T, Huang Y Z, Xia L X, Chen X W and Xu H X 2011 J. Phys. Chem. C 115 9629 [15] Anderson L J E, Payne C M, Zhen Y R, Nordlander P and Hafner J H 2011 Nano Lett. 11 5034 [16] Alexander K D, Skinner K, Zhang S, Wei H and Lopez R 2010 Nano Lett. 10 4488 [17] Zhang W, Li Z, Guan Z, Shen H, Yu W, He W, Yan X, Li P and Xu H 2012 Chin. Sci. Bull. 57 68 [18] Langhammer C, Schwind M, Kasemo B and Zoric I 2008 Nano Lett. 8 1461 [19] Lorente-Crespo M, Wang L, Ortuno R, Garcia-Meca C, Ekinci Y and Martinez A 2013 Nano Lett. 13 2654 [20] Stanley R 2012 Nat. Photon. 6 409 [21] Baffou G, Girard C and Quidant R 2010 Phys. Rev. Lett. 104 136805 [22] Dionne J A 2013 Nat. Mater. 12 380 [23] Coppens Z J, Li W, Walker D G and Valentine J G 2013 Nano Lett. 13 1023 [24] Ou J Y, Plum E, Zhang J and Zheludev N I 2013 Nat. Nanotechnol. 8 252 [25] Tan H, Santbergen R, Smets A H and Zeman M 2012 Nano Lett. 12 4070 [26] Chen Z Q, Qi J W, Chen J, Li Y D, Hao Z Q, Lu W Q, Xu J J and Sun Q 2013 Chin. Phys. Lett. 30 057301 [27] Zhao J, Zhang C, Braun P V and Giessen H 2012 Adv. Opt. Mater. 24 247 [28] Zheludev N I, Prosvirnin S L, Papasimakis N and Fedotov V A 2008 Nat. Photon. 2 351 [29] Wu C H, Khanikaev A B, Adato R, Arju N, Yanik A A, Altug H and Shvets G 2011 Nat. Mater. 11 69 [30] Prodan E, Radloff C, Halas N J and Nordlander P 2003 Science 302 419 [31] Fang Y R and Huang Y Z 2013 Appl. Phys. Lett. 102 153108 [32] Mayer K M and Hafner J H 2011 Chem. Rev. 111 3828 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|