FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Non-Classical Correlated Photon Pairs Generation via Cascade Transition of 5S1/2–5P3/2–5D5/2 in a Hot 85Rb Atomic Vapor |
ZHANG Wei1,2, DING Dong-Sheng1,2, PAN Jian-Song1,2, SHI Bao-Sen1,2** |
1Key Laboratory of Quantum Information, Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230026 2Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026
|
|
Cite this article: |
ZHANG Wei, DING Dong-Sheng, PAN Jian-Song et al 2014 Chin. Phys. Lett. 31 064208 |
|
|
Abstract We experimentally prepare the non-classical correlated photon pairs at the wavelengths of 780 and 776 nm via the cascade transition of 5S1/2–5P3/2–5D5/2 in a hot 85Rb atomic ensemble. By measuring the function of cross-correlation and auto-correlation of photons, a violation of Cauchy–Schwarz inequality by a factor of 283 is obtained, which clearly indicates a strong non-classical correlation between the generated photons. We also find that noise photons scattered from pump lasers have a strong effect on the Cauchy–Schwarz inequality factor by changing the intensity of the pump laser, the experimental results are consistent with the theoretical predictions.
|
|
Published: 26 May 2014
|
|
PACS: |
42.50.-p
|
(Quantum optics)
|
|
42.50.Ar
|
|
|
42.65.Hw
|
(Phase conjugation; photorefractive and Kerr effects)
|
|
42.65.Lm
|
(Parametric down conversion and production of entangled photons)
|
|
|
|
|
[1] Fry E S and Thompson R C 1976 Phys. Rev. Lett. 37 465 [2] Weihs G, Jennewein T, Simon C, Weinfurter H and Zeilinger A 1998 Phys. Rev. Lett. 81 5039 [3] Pittman T B, Shih Y H, Strekalov D V and Sergienko A V 1995 Phys. Rev. A 52 R3429 [4] Ekert A K 1991 Phys. Rev. Lett. 67 661 [5] Duan L M, Lukin M D, Cirac J I and Zoller P 2001 Nature 414 413 [6] Migdall A, Datla R, Sergienko A V, Orszak J S and Shih Y H 1998 Appl. Opt. 37 3455 [7] Yang L, Li X Y and Wang B S 2008 Acta Phys. Sin. 57 4933 (in Chinese) [8] Liu S D, Cheng M T, Wang X and Wang Q Q 2007 Acta Phys. Sin. 56 4924 (in Chinese) [9] Guo G C and Chai J H 1997 Chin. Phys. B 6 496 [10] Burnham D and Weinberg D 1970 Phys. Rev. Lett. 25 84 [11] Harris S E, Oshman M K and Byer R L 1967 Phys. Rev. Lett. 18 732 [12] Shi B S and Tomita A 2004 Phys. Rev. A 69 013803 [13] Ou Z Y and Lu Y J 1999 Phys. Rev. Lett. 83 2556 [14] Kuklewicz C E, Wong F N C and Shapiro J H 2006 Phys. Rev. Lett. 97 223601 [15] Wang F Y, Shi B S and Guo G C 2010 Opt. Commun. 283 2974 [16] Wang F Y, Shi B S and Guo G C 2008 Opt. Lett. 33 2191 [17] Ou Z Y and Lu Y J 1999 Phys. Rev. Lett. 83 2556 [18] Ding D S, Zhou Z Y, Shi B S, Zou X B and Guo G C 2012 Opt. Express 20 11433 [19] Lu X S, Chen Q F, Shi B S and Guo G C 2009 Chin. Phys. Lett. 26 064204 [20] Chen Q F, Shi B S, Feng M, Zhang Y S and Guo G C 2008 Opt. Express 16 21708 [21] Kuzmich A, Bowen W P, Boozer A D, Boca A, Chou C W, Duan L M and Kimble H J 2003 Nature 423 731 [22] Du S W, Wen J M and Rubin M H 2008 J. Opt. Soc. Am. B 25 C98 [23] Chanelière T, Matsukevich D N, Jenkins S D, Kennedy T A B, Chapman M S and Kuzmich A 2006 Phys. Rev. Lett. 96 093604 [24] Willis R T, Becerra F E, Orozco L A and Rolston S L 2010 Phys. Rev. A 82 053842 [25] Srivathsan B, Gulati G K, Chng B, Maslennikov G, Matsukevich D and Kurtsiefer C 2013 Phys. Rev. Lett. 111 123602 [26] Miao X R, Gao S M and Gao Y 2008 Acta Phys. Sin. 57 7699 (in Chinese) [27] Sun J, Zuo Z C, Guo Q L, Wang Y L, Huai S F, Wang Y and Fu P M 2006 Acta Phys. Sin. 55 221 (in Chinese) |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|