Chin. Phys. Lett.  2014, Vol. 31 Issue (06): 064208    DOI: 10.1088/0256-307X/31/6/064208
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Non-Classical Correlated Photon Pairs Generation via Cascade Transition of 5S1/2–5P3/2–5D5/2 in a Hot 85Rb Atomic Vapor
ZHANG Wei1,2, DING Dong-Sheng1,2, PAN Jian-Song1,2, SHI Bao-Sen1,2**
1Key Laboratory of Quantum Information, Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230026
2Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026
Cite this article:   
ZHANG Wei, DING Dong-Sheng, PAN Jian-Song et al  2014 Chin. Phys. Lett. 31 064208
Download: PDF(1968KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We experimentally prepare the non-classical correlated photon pairs at the wavelengths of 780 and 776 nm via the cascade transition of 5S1/2–5P3/2–5D5/2 in a hot 85Rb atomic ensemble. By measuring the function of cross-correlation and auto-correlation of photons, a violation of Cauchy–Schwarz inequality by a factor of 283 is obtained, which clearly indicates a strong non-classical correlation between the generated photons. We also find that noise photons scattered from pump lasers have a strong effect on the Cauchy–Schwarz inequality factor by changing the intensity of the pump laser, the experimental results are consistent with the theoretical predictions.
Published: 26 May 2014
PACS:  42.50.-p (Quantum optics)  
  42.50.Ar  
  42.65.Hw (Phase conjugation; photorefractive and Kerr effects)  
  42.65.Lm (Parametric down conversion and production of entangled photons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/6/064208       OR      https://cpl.iphy.ac.cn/Y2014/V31/I06/064208
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Wei
DING Dong-Sheng
PAN Jian-Song
SHI Bao-Sen
[1] Fry E S and Thompson R C 1976 Phys. Rev. Lett. 37 465
[2] Weihs G, Jennewein T, Simon C, Weinfurter H and Zeilinger A 1998 Phys. Rev. Lett. 81 5039
[3] Pittman T B, Shih Y H, Strekalov D V and Sergienko A V 1995 Phys. Rev. A 52 R3429
[4] Ekert A K 1991 Phys. Rev. Lett. 67 661
[5] Duan L M, Lukin M D, Cirac J I and Zoller P 2001 Nature 414 413
[6] Migdall A, Datla R, Sergienko A V, Orszak J S and Shih Y H 1998 Appl. Opt. 37 3455
[7] Yang L, Li X Y and Wang B S 2008 Acta Phys. Sin. 57 4933 (in Chinese)
[8] Liu S D, Cheng M T, Wang X and Wang Q Q 2007 Acta Phys. Sin. 56 4924 (in Chinese)
[9] Guo G C and Chai J H 1997 Chin. Phys. B 6 496
[10] Burnham D and Weinberg D 1970 Phys. Rev. Lett. 25 84
[11] Harris S E, Oshman M K and Byer R L 1967 Phys. Rev. Lett. 18 732
[12] Shi B S and Tomita A 2004 Phys. Rev. A 69 013803
[13] Ou Z Y and Lu Y J 1999 Phys. Rev. Lett. 83 2556
[14] Kuklewicz C E, Wong F N C and Shapiro J H 2006 Phys. Rev. Lett. 97 223601
[15] Wang F Y, Shi B S and Guo G C 2010 Opt. Commun. 283 2974
[16] Wang F Y, Shi B S and Guo G C 2008 Opt. Lett. 33 2191
[17] Ou Z Y and Lu Y J 1999 Phys. Rev. Lett. 83 2556
[18] Ding D S, Zhou Z Y, Shi B S, Zou X B and Guo G C 2012 Opt. Express 20 11433
[19] Lu X S, Chen Q F, Shi B S and Guo G C 2009 Chin. Phys. Lett. 26 064204
[20] Chen Q F, Shi B S, Feng M, Zhang Y S and Guo G C 2008 Opt. Express 16 21708
[21] Kuzmich A, Bowen W P, Boozer A D, Boca A, Chou C W, Duan L M and Kimble H J 2003 Nature 423 731
[22] Du S W, Wen J M and Rubin M H 2008 J. Opt. Soc. Am. B 25 C98
[23] Chanelière T, Matsukevich D N, Jenkins S D, Kennedy T A B, Chapman M S and Kuzmich A 2006 Phys. Rev. Lett. 96 093604
[24] Willis R T, Becerra F E, Orozco L A and Rolston S L 2010 Phys. Rev. A 82 053842
[25] Srivathsan B, Gulati G K, Chng B, Maslennikov G, Matsukevich D and Kurtsiefer C 2013 Phys. Rev. Lett. 111 123602
[26] Miao X R, Gao S M and Gao Y 2008 Acta Phys. Sin. 57 7699 (in Chinese)
[27] Sun J, Zuo Z C, Guo Q L, Wang Y L, Huai S F, Wang Y and Fu P M 2006 Acta Phys. Sin. 55 221 (in Chinese)
Related articles from Frontiers Journals
[1] Ya-Jing Jiang, Xing-Dong Zhao, Shi-Qiang Xia, Chun-Jie Yang, Wu-Ming Liu, and Zun-Lue Zhu. Nonlinear Optomechanically Induced Transparency in a Spinning Kerr Resonator[J]. Chin. Phys. Lett., 2022, 39(12): 064208
[2] M.-L. Cai, Z.-D. Liu, Y. Jiang, Y.-K. Wu, Q.-X. Mei, W.-D. Zhao, L. He, X. Zhang, Z.-C. Zhou, and L.-M. Duan. Probing a Dissipative Phase Transition with a Trapped Ion through Reservoir Engineering[J]. Chin. Phys. Lett., 2022, 39(2): 064208
[3] Shaoxing Liu, Xuanying Lai, Ce Yang, and J. F. Chen. Towards High-Dimensional Entanglement in Path: Photon-Source Produced from a Two-Dimensional Atomic Cloud[J]. Chin. Phys. Lett., 2021, 38(8): 064208
[4] Rui Zhang, Yuan-Chuan Biao, Wen-Long You, Xiao-Guang Wang, Yu-Yu Zhang, and Zi-Xiang Hu. Generalized Rashba Coupling Approximation to a Resonant Spin Hall Effect of the Spin–Orbit Coupling System in a Magnetic Field[J]. Chin. Phys. Lett., 2021, 38(7): 064208
[5] Chen-Rui Zhang, Meng-Jun Hu, Guo-Yong Xiang, Yong-Sheng Zhang, Chuan-Feng Li, and Guang-Can Guo. Direct Strong Measurement of a High-Dimensional Quantum State[J]. Chin. Phys. Lett., 2020, 37(8): 064208
[6] Liwei Duan, Yan-Zhi Wang, and Qing-Hu Chen. $\mathcal{PT}$ Symmetry of a Square-Wave Modulated Two-Level System[J]. Chin. Phys. Lett., 2020, 37(8): 064208
[7] Zhiqiang Ren , Rong Wen , and J. F. Chen. Photon Coalescence in a Lossy Non-Hermitian Beam Splitter[J]. Chin. Phys. Lett., 2020, 37(8): 064208
[8] Wen-Ya Song, Fu-Lin Zhang. Dynamical Algebras in the 1+1 Dirac Oscillator and the Jaynes–Cummings Model[J]. Chin. Phys. Lett., 2020, 37(5): 064208
[9] Lingjie Yu, Heqing Wang, Hao Li, Zhen Wang, Yidong Huang, Lixing You, Wei Zhang. A Silicon Shallow-Ridge Waveguide Integrated Superconducting Nanowire Single Photon Detector Towards Quantum Photonic Circuits[J]. Chin. Phys. Lett., 2019, 36(8): 064208
[10] Jian-Feng Li, Yun-Fei Wang, Ke-Yu Su, Kai-Yu Liao, Shan-Chao Zhang, Hui Yan, Shi-Liang Zhu. Generation of Gaussian-Shape Single Photons for High Efficiency Quantum Storage[J]. Chin. Phys. Lett., 2019, 36(7): 064208
[11] Ji-Bing Yuan, Zhao-Hui Peng, Shi-Qing Tang, Deng-Yu Zhang. Superposed Transparency Effect and Entanglement Generation with Hybrid System of Photonic Molecule and Dipole Emitter[J]. Chin. Phys. Lett., 2019, 36(3): 064208
[12] Xing Wei, ZhenDa Xie, Yan-Xiao Gong, Xinjie Lv, Gang Zhao, ShiNing Zhu. Localization and Steering of Light in One-Dimensional Parity-Time Symmetric Photonic Lattices[J]. Chin. Phys. Lett., 2019, 36(1): 064208
[13] Ya-Jing Jiang, Hao Lü, Hui Jing. Superradiance-Driven Phonon Laser[J]. Chin. Phys. Lett., 2018, 35(4): 064208
[14] J. Shiri, F. Shahi, M. R. Mehmannavaz, L. Shahrassai. Phase Control of Transient Optical Properties of Double Coupled Quantum-Dot Nanostructure via Gaussian Laser Beams[J]. Chin. Phys. Lett., 2018, 35(2): 064208
[15] A. Asghari Nejad, H. R. Askari, H. R. Baghshahi. Bistability in a Hybrid Optomechanical System under the Effect of a Nonlinear Medium[J]. Chin. Phys. Lett., 2017, 34(8): 064208
Viewed
Full text


Abstract