FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Modeling of Fano Resonance in High-Contrast Resonant Grating Structures |
HU Jin-Hua, HUANG Yong-Qing**, REN Xiao-Min, DUAN Xiao-Feng, LI Ye-Hong, WANG Qi, ZHANG Xia, WANG Jun |
State Key Laboratory of Information Photonics and Optical Communications, Institute of Optical Communication and Optoelectronics, Beijing University of Posts and Telecommunications, Beijing 100876
|
|
Cite this article: |
HU Jin-Hua, HUANG Yong-Qing, REN Xiao-Min et al 2014 Chin. Phys. Lett. 31 064205 |
|
|
Abstract A new model is presented for Fano resonance in resonant grating structure based on the temporal coupled mode theory. By using this model, the reflection spectrum can be reproduced with the information of eigenmode of the structure, which can be numerically calculated by the finite element method. Therefore, the eigenmode plays a key role in determining the profile of the line shape of the Fano resonance in the resonant grating structure. When the space of two grating modulations is decreased, the line shape experiences a significant change. Such a drastic change can be attributed to the increase of quality factor of the eigenmodes. Thus, our model not only provides a simple and intuitive understanding on the mechanism of Fano resonance, but it also offers a convenient way to engineer the line shape of the Fano resonance. The proposed model can be used in many applications, such as biosensors, optical filters, and optical switchers.
|
|
Published: 26 May 2014
|
|
|
|
|
|
[1] Mateus C F R, Huang M C Y, Chen L and ChangHasnain C J 2004 IEEE Photon. Technol. Lett. 16 1676 [2] Cao W, Ma J Y and Zhou C H 2012 Chin. Opt. Lett. 10 112301 [3] Magnusson R, Ding Y, Lee K J, Priambodo P S and Wawro D 2005 International Society for Optics and Photonics (Boston MA 23 October 2005 60080U-160080U-10) [4] Cheben P, Janz S, Xu D X, Lamontagne B, Delage A and Tanev S 2006 IEEE Photon. Technol. Lett. 18 13 [5] Mateus C F R, Huang M C Y, Deng Y F, Neureuther A R and Chang-Hasnain C J 2004 IEEE Photon. Technol. Lett. 16 518 [6] Zhou Y, Huang M C Y, Chase C, Karagodsky V, Moewe M, Pesala B, Sedgwick F G and ChangHasnain C J 2009 IEEE J. Sel. Top. Quantum Electron. 15 1485 [7] Fano U 1961 Phys. Rev. 124 1866 [8] Zhou Y, Moewe M, Kern J, Huang M C Y and ChangHasnain C J 2008 Opt. Express 16 17282 [9] Karagodsky V, Chase C and Chang-Hasnain C J 2011 Opt. Lett. 36 1704 [10] Ahmed A, Liscidini M and Gordon R 2010 IEEE Photon. J. 2 884 [11] Wu T T, Wu S H, Lu T C and Wang S C 2013 Appl. Phys. Lett. 102 081111 [12] Moharam M G, Pommet D A, Grann E B and Gaylord T K 1995 J. Opt. Soc. Am. A 12 1077 [13] Moharam M G, Grann E B, Pommet D A and Gaylord T K 1995 J. Opt. Soc. Am. A 12 1068 [14] Taflove A and Hagness S C 2005 Computational Electrodynamics: The Finite-Difference Time-Domain Method 3rd edn (Massachusetts: Artech House) [15] Fan S, Suh W and Joannopoulos J D 2003 J. Opt. Soc. Am. A 20 569 [16] Cao L Y, Fan P Y and Brongersma M L 2011 Nano Lett. 11 1463 [17] Huang L J, Yu Y L and Cao L Y 2013 Nano Lett. 13 3559 [18] Komarevskiy N, Shklover V, Braginsky L and Hafner C 2013 Prog. Eletromagn. Res. 139 799 [19] Yu Y L and Cao L Y 2012 Opt. Express 20 13847 [20] Haus H A 1984 Wave and Fields in Optoelectronics (New Jersey: Prentice-Hall) [21] Rytov S M 1956 Sov. Phys. JETP 2 466 [22] Wolf M and Born E 1999 Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light 7th (expanded) edn (Cambridge: Cambridge University Press) [23] Liu W X, Li Y H, Jiang H T, Lai Z Q and Chen H 2013 Opt. Lett. 38 163 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|