Chin. Phys. Lett.  2014, Vol. 31 Issue (06): 064205    DOI: 10.1088/0256-307X/31/6/064205
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Modeling of Fano Resonance in High-Contrast Resonant Grating Structures
HU Jin-Hua, HUANG Yong-Qing**, REN Xiao-Min, DUAN Xiao-Feng, LI Ye-Hong, WANG Qi, ZHANG Xia, WANG Jun
State Key Laboratory of Information Photonics and Optical Communications, Institute of Optical Communication and Optoelectronics, Beijing University of Posts and Telecommunications, Beijing 100876
Cite this article:   
HU Jin-Hua, HUANG Yong-Qing, REN Xiao-Min et al  2014 Chin. Phys. Lett. 31 064205
Download: PDF(520KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A new model is presented for Fano resonance in resonant grating structure based on the temporal coupled mode theory. By using this model, the reflection spectrum can be reproduced with the information of eigenmode of the structure, which can be numerically calculated by the finite element method. Therefore, the eigenmode plays a key role in determining the profile of the line shape of the Fano resonance in the resonant grating structure. When the space of two grating modulations is decreased, the line shape experiences a significant change. Such a drastic change can be attributed to the increase of quality factor of the eigenmodes. Thus, our model not only provides a simple and intuitive understanding on the mechanism of Fano resonance, but it also offers a convenient way to engineer the line shape of the Fano resonance. The proposed model can be used in many applications, such as biosensors, optical filters, and optical switchers.
Published: 26 May 2014
PACS:  42.79.Dj (Gratings)  
  42.25.-p (Wave optics)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/6/064205       OR      https://cpl.iphy.ac.cn/Y2014/V31/I06/064205
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HU Jin-Hua
HUANG Yong-Qing
REN Xiao-Min
DUAN Xiao-Feng
LI Ye-Hong
WANG Qi
ZHANG Xia
WANG Jun
[1] Mateus C F R, Huang M C Y, Chen L and ChangHasnain C J 2004 IEEE Photon. Technol. Lett. 16 1676
[2] Cao W, Ma J Y and Zhou C H 2012 Chin. Opt. Lett. 10 112301
[3] Magnusson R, Ding Y, Lee K J, Priambodo P S and Wawro D 2005 International Society for Optics and Photonics (Boston MA 23 October 2005 60080U-160080U-10)
[4] Cheben P, Janz S, Xu D X, Lamontagne B, Delage A and Tanev S 2006 IEEE Photon. Technol. Lett. 18 13
[5] Mateus C F R, Huang M C Y, Deng Y F, Neureuther A R and Chang-Hasnain C J 2004 IEEE Photon. Technol. Lett. 16 518
[6] Zhou Y, Huang M C Y, Chase C, Karagodsky V, Moewe M, Pesala B, Sedgwick F G and ChangHasnain C J 2009 IEEE J. Sel. Top. Quantum Electron. 15 1485
[7] Fano U 1961 Phys. Rev. 124 1866
[8] Zhou Y, Moewe M, Kern J, Huang M C Y and ChangHasnain C J 2008 Opt. Express 16 17282
[9] Karagodsky V, Chase C and Chang-Hasnain C J 2011 Opt. Lett. 36 1704
[10] Ahmed A, Liscidini M and Gordon R 2010 IEEE Photon. J. 2 884
[11] Wu T T, Wu S H, Lu T C and Wang S C 2013 Appl. Phys. Lett. 102 081111
[12] Moharam M G, Pommet D A, Grann E B and Gaylord T K 1995 J. Opt. Soc. Am. A 12 1077
[13] Moharam M G, Grann E B, Pommet D A and Gaylord T K 1995 J. Opt. Soc. Am. A 12 1068
[14] Taflove A and Hagness S C 2005 Computational Electrodynamics: The Finite-Difference Time-Domain Method 3rd edn (Massachusetts: Artech House)
[15] Fan S, Suh W and Joannopoulos J D 2003 J. Opt. Soc. Am. A 20 569
[16] Cao L Y, Fan P Y and Brongersma M L 2011 Nano Lett. 11 1463
[17] Huang L J, Yu Y L and Cao L Y 2013 Nano Lett. 13 3559
[18] Komarevskiy N, Shklover V, Braginsky L and Hafner C 2013 Prog. Eletromagn. Res. 139 799
[19] Yu Y L and Cao L Y 2012 Opt. Express 20 13847
[20] Haus H A 1984 Wave and Fields in Optoelectronics (New Jersey: Prentice-Hall)
[21] Rytov S M 1956 Sov. Phys. JETP 2 466
[22] Wolf M and Born E 1999 Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light 7th (expanded) edn (Cambridge: Cambridge University Press)
[23] Liu W X, Li Y H, Jiang H T, Lai Z Q and Chen H 2013 Opt. Lett. 38 163
Related articles from Frontiers Journals
[1] Yanyan Cao, Bocheng Yu, Yangyang Fu, Lei Gao, and Yadong Xu. Phase-Gradient Metasurfaces Based on Local Fabry–Pérot Resonances[J]. Chin. Phys. Lett., 2020, 37(9): 064205
[2] Chen Huang , Qian-Ju Song , Peng Hu , Shi-Wei Dai , Hong Xiang, Dezhuan Han. Bound States in the Continuum in One-Dimensional Dimerized Plasmonic Gratings *[J]. Chin. Phys. Lett., 0, (): 064205
[3] Chen Huang , Qian-Ju Song , Peng Hu , Shi-Wei Dai , Hong Xiang, Dezhuan Han. Bound States in the Continuum in One-Dimensional Dimerized Plasmonic Gratings[J]. Chin. Phys. Lett., 2020, 37(6): 064205
[4] Xia-Zhi Li, Hong-Bin Zhuo, De-Bin Zou, Shi-Jie Zhang, Hong-Yu Zhou, Na Zhao, Yue Lang, De-Yao Yu. High-Order-Harmonic Generation from a Relativistic Circularly Polarized Laser Interacting with Over-Dense Plasma Grating[J]. Chin. Phys. Lett., 2017, 34(9): 064205
[5] Chen Li, Tian-Wei Zhou, Jing-Gang Xiang, Yue-Yang Zhai, Xu-Guang Yue, Shi-Feng Yang, Wei Xiong, Xu-Zong Chen. Two-Dimensional Talbot Effect with Atomic Density Gratings[J]. Chin. Phys. Lett., 2017, 34(8): 064205
[6] Jin Kang, Bao-Le Lu, Xin-Yuan Qi, Xiao-Qiang Feng, Hao-Wei Chen, Man Jiang, Yang Wang, Pan Fu, Jin-Tao Bai. An Efficient Single-Frequency Yb-Doped All-Fiber MOPA Laser at 1064.3nm[J]. Chin. Phys. Lett., 2016, 33(12): 064205
[7] Xiao-Qiang Zhang, Rui-Shan Chen, Yong Zhou, Hai Ming, An-Ting Wang. Convention of Optical Vortices in Two-Helix Long-Period Fiber Gratings[J]. Chin. Phys. Lett., 2016, 33(08): 064205
[8] Yong Liu, Chen Wang, Anastasia Nemkova, Shi-Ming Hu, Zhi-Yong Li, Yu-De Yu. Structured Illumination Chip Based on Integrated Optics[J]. Chin. Phys. Lett., 2016, 33(05): 064205
[9] SONG Yu-Zhi, ZHANG Yu, SONG Jia-Kun, LI Kang-Wen, ZHANG Zu-Yin, XU Yun, SONG Guo-Feng, CHEN Liang-Hui. Single Mode 2 μm GaSb Based Laterally Coupled Distributed Feedback Quantum-Well Laser Diodes with Metal Grating[J]. Chin. Phys. Lett., 2015, 32(07): 064205
[10] LU Bao-Le, HUANG Sheng-Hong, YIN Mo-Juan, CHEN Hao-Wei, REN Zhao-Yu, BAI Jin-Tao. Wavelength-Tunable Single Frequency Ytterbium-Doped Fiber Laser with Loop Mirror Filter[J]. Chin. Phys. Lett., 2015, 32(4): 064205
[11] ZHANG Ji-Cheng, LIU Yu-Wei, HUANG Cheng-Long, ZHANG Qiang-Qiang, YI Yong, ZENG Yong, ZHU Xiao-Li, FAN Quan-Ping, QIAN Feng, WEI Lai, WANG Hong-Bin, WU Wei-Dong, CAO Lei-Feng. Diffraction Properties for 1000 Line/mm Free-Standing Quantum-Dot-Array Diffraction Grating Fabricated by Focused Ion Beam[J]. Chin. Phys. Lett., 2014, 31(12): 064205
[12] LIU Ning-Liang, LIU Shu-Hui, LU Pei-Xiang. A Femtosecond-Laser-Induced Fiber Bragg Grating with Supermode Resonances for Sensing Applications[J]. Chin. Phys. Lett., 2014, 31(09): 064205
[13] ZHAO Jian-Yi, CHEN Xin, ZHOU Ning, HUANG Xiao-Dong, CAO Ming-De, LIU Wen. A 16-Channel Distributed-Feedback Laser Array with a Monolithic Integrated Arrayed Waveguide Grating Multiplexer for a Wavelength Division Multiplex-Passive Optical Network System Network[J]. Chin. Phys. Lett., 2014, 31(07): 064205
[14] YAO Bao-Yin, FENG Li-Shuang, WANG Xiao, LIU Wei-Fang, LIU Mei-Hua. Micrograting Displacement Sensor with Integrated Electrostatic Actuation[J]. Chin. Phys. Lett., 2014, 31(07): 064205
[15] CHEN Xin, ZHAO Jian-Yi, ZHOU Ning, HUANG Xiao-Dong, LIU Wen. Four-Channel 1.55-μm DFB Laser Array Monolithically Integrated with a 4×1 Multimode-Interference Combiner Based on Nanoimprint Lithography[J]. Chin. Phys. Lett., 2014, 31(04): 064205
Viewed
Full text


Abstract