Chin. Phys. Lett.  2014, Vol. 31 Issue (06): 060301    DOI: 10.1088/0256-307X/31/6/060301
GENERAL |
Characteristics of Entanglement Wave in Two Parallel Spin Chains
LI Xin**, LI Zhong-Fang, SHI Zhi-Long, WANG Xiao-Qin
Faculty of Science, Kunming University of Science and Technology, Kunming 650093
Cite this article:   
LI Xin, LI Zhong-Fang, SHI Zhi-Long et al  2014 Chin. Phys. Lett. 31 060301
Download: PDF(715KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on the solvable spin-1/2 Heisenberg chain we demonstrate how two many-body systems are entangled due to their partial entanglement. The entanglement wave in the two spin chains displays a damped oscillation if the spin number is N>3, and only propagates with a certain velocity depending on the coupling constant J. Moreover, the entanglement wave will be reflected on the other ends of the two spin chains. A simple scheme for transferring some special two-qubit states to other two distant qubits is also proposed.
Published: 26 May 2014
PACS:  03.67.Hk (Quantum communication)  
  03.67.-a (Quantum information)  
  03.67.Bg (Entanglement production and manipulation)  
  75.10.Pq (Spin chain models)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/6/060301       OR      https://cpl.iphy.ac.cn/Y2014/V31/I06/060301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Xin
LI Zhong-Fang
SHI Zhi-Long
WANG Xiao-Qin
[1] Bose S 2003 Phys. Rev. Lett. 91 207901
[2] Bose S 2007 Contemp. Phys. 48 13
[3] Kay A 2010 Int. J. Quantum Inf. 08 641
Kay A 2009 arXiv:0903.4274 [quant-ph]
[4] Christandl M, Datta N, Ekert A and Landahl A J 2004 Phys. Rev. Lett. 92 187902
[5] Venuti L C, Boschi C D E and Roncaglia M 2007 Phys. Rev. Lett. 99 060401
[6] Vinet L and Zhedanov A 2012 Phys. Rev. A 86 052319
[7] Kay A 2006 Phys. Rev. A 73 032306
[8] Crooks R H and Khveshchenko D V 2008 Phys. Rev. A 77 062305
[9] Bayat A and Bose S 2010 Adv. Math. Phys. 2010 1
[10] Banchi L, Apollaro T J G, Cuccoli A, Vaia R and Verrucchi P 2010 Phys. Rev. A 82 052321
[11] Subrahmanyam V and Lakshminarayan A 2006 Phys. Lett. A 349 164
[12] Mattis D C 1965 The Theory of Magnetism (New York: Harper and Row)
[13] Thompson C J 1972 Phase Transitions and Critical Phenomena edn Domb C and Green M S (London: Academic)
[14] Takahashi M 1999 Thermodynamics of One-Dimensional Solvable Models (London: Cambridge University Press)
[15] Schmit E 1907 Ann. Math. 63 433
[16] Wootters W K 1998 Phys. Rev. Lett. 80 2245
Related articles from Frontiers Journals
[1] Jian Li, Yang Zhou, and Qin Wang. Demonstration of Einstein–Podolsky–Rosen Steering with Multiple Observers via Sequential Measurements[J]. Chin. Phys. Lett., 2022, 39(11): 060301
[2] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 060301
[3] Jian Li, Jia-Li Zhu, Jiang Gao, Zhi-Guang Pang, and Qin Wang. Semi-Measurement-Device-Independent Quantum State Tomography[J]. Chin. Phys. Lett., 2022, 39(7): 060301
[4] Yanbo Lou, Xiaoyin Xu, Shengshuai Liu, and Jietai Jing. Low-Noise Intensity Amplification of a Bright Entangled Beam[J]. Chin. Phys. Lett., 2021, 38(9): 060301
[5] Keyu Su, Yunfei Wang, Shanchao Zhang, Zhuoping Kong, Yi Zhong, Jianfeng Li, Hui Yan, and Shi-Liang Zhu. Synchronization and Phase Shaping of Single Photons with High-Efficiency Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(9): 060301
[6] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, and Guo-Ping Guo. Variational Quantum Algorithms for the Steady States of Open Quantum Systems[J]. Chin. Phys. Lett., 2021, 38(8): 060301
[7] Luyu Huang , Yichen Zhang, and Song Yu . Continuous-Variable Measurement-Device-Independent Quantum Key Distribution with One-Time Shot-Noise Unit Calibration[J]. Chin. Phys. Lett., 2021, 38(4): 060301
[8] A-Long Zhou , Dong Wang, Xiao-Gang Fan , Fei Ming , and Liu Ye. Mutual Restriction between Concurrence and Intrinsic Concurrence for Arbitrary Two-Qubit States[J]. Chin. Phys. Lett., 2020, 37(11): 060301
[9] Wei-Min Shang, Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Quantum Deletion of Copies of Two Non-orthogonal Quantum States via Weak Measurement[J]. Chin. Phys. Lett., 2020, 37(5): 060301
[10] Yu Mao, Qi Liu, Ying Guo, Hang Zhang, Jian Zhou. Four-State Modulation in Middle of a Quantum Channel for Continuous-Variable Quantum Key Distribution Protocol with Noiseless Linear Amplifier[J]. Chin. Phys. Lett., 2019, 36(10): 060301
[11] Sheng-Li Zhang, Song Yang. Methods for Derivation of Density Matrix of Arbitrary Multi-Mode Gaussian States from Its Phase Space Representation[J]. Chin. Phys. Lett., 2019, 36(9): 060301
[12] Guang-Zhao Tang, Shi-Hai Sun, Chun-Yan Li. Experimental Point-to-Multipoint Plug-and-Play Measurement-Device-Independent Quantum Key Distribution Network[J]. Chin. Phys. Lett., 2019, 36(7): 060301
[13] Ya-Hui Gan, Yang Wang, Wan-Su Bao, Ru-Shi He, Chun Zhou, Mu-Sheng Jiang. Finite-Key Analysis for a Practical High-Dimensional Quantum Key Distribution System Based on Time-Phase States[J]. Chin. Phys. Lett., 2019, 36(4): 060301
[14] Min Xiao, Di-Fang Zhang. Practical Quantum Private Query with Classical Participants[J]. Chin. Phys. Lett., 2019, 36(3): 060301
[15] Cai-Lang Xie, Ying Guo, Yi-Jun Wang, Duan Huang, Ling Zhang. Security Simulation of Continuous-Variable Quantum Key Distribution over Air-to-Water Channel Using Monte Carlo Method[J]. Chin. Phys. Lett., 2018, 35(9): 060301
Viewed
Full text


Abstract