Chin. Phys. Lett.  2014, Vol. 31 Issue (05): 057301    DOI: 10.1088/0256-307X/31/5/057301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Fano Resonance by Symmetry Breaking Stub in a Metal-Dielectric-Metal Waveguide
TANG Dong-Hua1**, DING Wei-Qiang2
1Department of Physics, Northeast Forestry University, Harbin 150040
2Department of Physics, Harbin Institute of Technology, Harbin 150001
Cite this article:   
TANG Dong-Hua, DING Wei-Qiang 2014 Chin. Phys. Lett. 31 057301
Download: PDF(518KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The coupling of a stub obliquely intersected with a metal-dielectric-metal plasmonic waveguide is investigated by using the finite difference in time domain method. Results show that an odd mode, except for the usual even mode, is excited in the stub due to the symmetry breaking of the oblique intersection. Moreover, the results show that the quality factor of the odd mode is very high in comparison with that of the usual even mode, which is then explained by the symmetry breaking of the oblique stub intersection. The superposition of the even and the odd mode generates a Fano shaped spectrum with a very narrow linewidth. The effect of metallic loss and compensation are also discussed. Both the stub and the waveguide are compact in size, and simple in structure, which are beneficial for the achievements of narrow band filtering, sensing, lasing, and nonlinearity enhancement.
Published: 24 April 2014
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  42.82.Et (Waveguides, couplers, and arrays)  
  42.79.Ci (Filters, zone plates, and polarizers)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/5/057301       OR      https://cpl.iphy.ac.cn/Y2014/V31/I05/057301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TANG Dong-Hua
DING Wei-Qiang
[1] Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y and Ebbesen T W 2006 Nature 440 508
[2] Gramotnev D K and Bozhevolnyi S I 2010 Nat. Photon. 4 83
[3] Xiao S, Liu L and Qiu M 2006 Opt. Express 14 2932
[4] Hosseini A and Massoud Y 2007 Appl. Phys. Lett. 90 181102
[5] Wang T, Wen X, Yin C and Wang H 2009 Opt. Express 17 24096
[6] Han Z, Van V, Herman W N and Ho P T 2009 Opt. Express 17 12678
[7] Holmgaard T, Chen Z, Bozhevolnyi S I, Markey L and Dereux A 2009 Opt. Express 17 2968
[8] Volkov V S, Bozhevolnyi S I, Devaux E, Laluet J Y and Ebbesen T W 2007 Nano Lett. 7 880
[9] Yang L, Min C and Veronis G 2010 Opt. Lett. 35 4184
[10] Huang Y, Min C and Veronis G 2011 Appl. Phys. Lett. 99 143117
[11] Thomas R, Ikonic Z and Kelsall R W 2011 Photon. Nanostruct. Fundam. Appl. 9 101
[12] Zhu Y J, Huang X G and Mei X 2012 Chin. Phys. Lett. 29 064214
[13] Zhu J H, Huang X G and Mei X 2011 Chin. Phys. Lett. 28 054205
[14] Pannipitiya A, Rukhlenko I D and Premaratne M 2011 J. Opt. Soc. Am. B 28 2820
[15] Pannipitiya A, Rukhlenko I D and Premaratne M 2011 IEEE Photon. J. 3 220
[16] Pannipitiya A, Rukhlenko I D, Premaratne M, Hattori H T and Agrawal G P 2010 Opt. Express 18 6191
[17] Liu J, Fang G, Zhao H, Zhang Y and Liu S 2009 Opt. Express 17 20134
[18] Piao X, Yu S, Koo S, Lee K and Park N 2011 Opt. Express 19 10907
[19] Mirnaziry S R, Setayesh A and Abrishamian M S 2011 J. Opt. Soc. Am. B 28 1300
[20] Lu H, Liu X, Gong Y, Mao D and Wang G 2011 J. Opt. Soc. Am. B 28 1616
[21] Chen J, Li Z, Li J and Gong Q 2011 Opt. Express 19 9976
[22] Chen P, Liang R, Huang Q and Xu Y 2011 Opt. Commun. 284 4795
[23] Chen J, Sun C and Gong Q 2014 Opt. Lett. 39 52
[24] Zeng C and Cui Y 2013 Opt. Commun. 290 188
[25] Chen Z Q, Qi J W, Chen J, Li Y D, Hao Z Q, Lu W Q, Xu J J and Sun Q 2013 Chin. Phys. Lett. 30 057301
[26] Taflove A and Hagness S C 2005 Comput. ElectroDyn.: Finite-Difference Time-Domain Method 3rd edn (Norwood: Artech House)
[27] Palik E 1985 Handbook of Optical Constants of Solids (San Diego: Academic Press)
[28] Fano U 1961 Phys. Rev. 124 1866
[29] Miroshnichenko A E, Flach S and Kivshar Y S 2010 Rev. Mod. Phys. 82 2257
[30] Luk'yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H and Chong C T 2010 Nat. Mater. 9 707
[31] Feigenbaum E and Atwater H A 2010 Phys. Rev. Lett. 104 147402
[32] Endo S, Oka T and Aoki H 2010 Phys. Rev. B 81 113104
[33] Xu Y, Li Y, Lee R K and Yariv A 2000 Phys. Rev. E 62 7389
[34] Fan S, Villeneuve P R, Joannopoulos J D, Khan M J, Manolatou C and Haus H A 1999 Phys. Rev. B 59 15882
Related articles from Frontiers Journals
[1] Qirui Cui, Jinghua Liang, Yingmei Zhu, Xiong Yao, and Hongxin Yang. Quantum Anomalous Hall Effects Controlled by Chiral Domain Walls[J]. Chin. Phys. Lett., 2023, 40(3): 057301
[2] Xiang Xiong, Zhao-Yuan Zeng, Ruwen Peng, and Mu Wang. Directional Chiral Optical Emission by Electron-Beam-Excited Nano-Antenna[J]. Chin. Phys. Lett., 2023, 40(1): 057301
[3] Lili Zhao, Wenlu Lin, Y. J. Chung, K. W. Baldwin, L. N. Pfeiffer, and Yang Liu. Finite Capacitive Response at the Quantum Hall Plateau[J]. Chin. Phys. Lett., 2022, 39(9): 057301
[4] Yuan-Fang Yu, Ye Zhang, Fan Zhong, Lin Bai, Hui Liu, Jun-Peng Lu, and Zhen-Hua Ni. Highly Sensitive Mid-Infrared Photodetector Enabled by Plasmonic Hot Carriers in the First Atmospheric Window[J]. Chin. Phys. Lett., 2022, 39(5): 057301
[5] Gongzheng Chen, Jin Lan, Tai Min, and Jiang Xiao. Narrow Waveguide Based on Ferroelectric Domain Wall[J]. Chin. Phys. Lett., 2021, 38(8): 057301
[6] Yun-Fei Zou and Li Yu. Lower Exciton Number Strong Light Matter Interaction in Plasmonic Tweezers[J]. Chin. Phys. Lett., 2021, 38(2): 057301
[7] Jiancai Xue , Limin Lin , Zhang-Kai Zhou, and Xue-Hua Wang . Semi-Ellipsoid Nanoarray for Angle-Independent Plasmonic Color Printing[J]. Chin. Phys. Lett., 2020, 37(11): 057301
[8] Ping Jiang, Chao Li, Yuan-Yuan Chen, Gang Song, Yi-Lin Wang, Li Yu. Strong Exciton-Plasmon Coupling and Hybridization of Organic-Inorganic Exciton-Polaritons in Plasmonic Nanocavity[J]. Chin. Phys. Lett., 2019, 36(10): 057301
[9] Binbin Liu, Pujuan Ma, Wenjing Yu, Yadong Xu, Lei Gao. Tunable Bistability in the Goos–H?nchen Effect with Nonlinear Graphene[J]. Chin. Phys. Lett., 2019, 36(6): 057301
[10] Peng Sun, Wei-Wei Yu, Xiao-Hang Pan, Wei Wei, Yan Sun, Ning-Yi Yuan, Jian-Ning Ding, Wen-Chao Zhao, Xin Chen, Ning Dai. Fluorescence Enhancement of Metal-Capped Perovskite CH$_{3}$NH$_{3}$PbI$_{3}$ Thin Films[J]. Chin. Phys. Lett., 2017, 34(9): 057301
[11] A. R. Sadrolhosseini, M. Naseri, M. K. Halimah. Erratum: Polypyrrole Chitosan Cobalt Ferrite Nanoparticles Composite Layer for Measuring the Low Concentration of Fluorene Using Surface Plasmon Resonance [Chin. Phys. Lett. 34(2017)057501][J]. Chin. Phys. Lett., 2017, 34(8): 057301
[12] A. R. Sadrolhosseini, M. Naseri, M. K. Halimah. Polypyrrole Chitosan Cobalt Ferrite Nanoparticles Composite Layer for Measuring the Low Concentration of Fluorene Using Surface Plasmon Resonance[J]. Chin. Phys. Lett., 2017, 34(5): 057301
[13] Xin Sun. Generalized Hellmann–Feynman Theorem and Its Applications[J]. Chin. Phys. Lett., 2016, 33(12): 057301
[14] Chuan-Pu Liu, Xin-Li Zhu, Jia-Sen Zhang, Jun Xu, Yamin Leprince-Wang, Da-Peng Yu. Energy Levels of Coupled Plasmonic Cavities[J]. Chin. Phys. Lett., 2016, 33(08): 057301
[15] Xiao-Kun Zhao, Yuan Yao, Pei-Lin Lang, Hong-Lian Guo, Xi Shen, Yan-Guo Wang, Ri-Cheng Yu. Absorption Range and Energy Shift of Surface Plasmon in Au Monomer and Dimer[J]. Chin. Phys. Lett., 2016, 33(02): 057301
Viewed
Full text


Abstract