CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Stabilization of η-Cu6Sn5 Intermetallic Compound by Zn Addition: First-Principles Investigation |
ZHOU Wei**, LIU Yan-Yu |
Department of Applied Physics, Faculty of Science, Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, Tianjin University, Tianjin 300072
|
|
Cite this article: |
ZHOU Wei, LIU Yan-Yu 2014 Chin. Phys. Lett. 31 057101 |
|
|
Abstract The structural phase transformation and electronic properties of Cu6Sn5 with and without Zn addition are analyzed based on the first principles calculations. The results indicate that the energy difference between the η phase and the η' phase decreases significantly after Zn addition at finite temperature. This implies that the high temperature η-phase Cu6(Sn,Zn)5 will be stabilized. Moreover, the bulk modulus is also improved after Zn addition. We attribute the corresponding structural stabilization to the relatively strong Zn–Cu and Zn–Sn bonding in the η-Cu6(Sn,Zn)5.
|
|
Published: 24 April 2014
|
|
PACS: |
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
64.70.K
|
(Solid-solid transitions)
|
|
71.20.Lp
|
(Intermetallic compounds)
|
|
|
|
|
[1] Sharma S, Fransson L, E Sj?stedt, Nordstr?m L, Johansson B and Edstr?m K 2003 J. Electrochem. Soc. 150 A330 [2] Larcher D, Beaulieu L Y, MacNeil D D and Dahn J R 2000 J. Electrochem. Soc. 147 1658 [3] Takeuchi T, Sato H and Mizutani U 2002 J. Alloys Compd. 342 355 [4] Mukhopadhyay N K, Mukherjee D, Bera S and Manna R 2008 Mater. Sci. Eng. A 485 673 [5] Marshall J L, Foster L A and Sees J A 1994 Mech. Solder Alloy Interconnects (New York: Van Nostrand Reinhold) p 68 [6] Tu K N and Zeng Z 2001 Mater. Sci. Eng. R 34 1 [7] Lee B J, Hwang N M and Lee H M 1997 Acta Mater. 45 1867 [8] Laurila T, Vuorinen V and Kivilahti J K 2005 Mater. Sci. Eng. R 49 1 [9] Nogita K, Gourlay C M and Nishimura T 2009 JOM 61 45 [10] Nogita K 2010 Intermetallics 18 145 [11] Li M Y, Zhang Z H and Kim J M 2011 Appl. Phys. Lett. 98 201901 [12] Schwingenschlogl U, Paola C D, Nogita K and Gourlay C M 2010 Appl. Phys. Lett. 96 061908 [13] Nogita K and Nishimura T 2008 Scr. Mater. 59 191 [14] Yu C Y and Duh J G 2011 Scr. Mater. 65 783 [15] Shao W Q, Yu C Y, Lu W C, Duh J G and Chen S O 2013 Mater. Lett. 93 300 [16] Yang Y, Li Y Z, Lu H, Yu C and Chen J M 2012 Comput. Mater. Sci. 65 490 [17] Kresse G and Hafner J 1996 Comput. Mater. Sci. 6 15 [18] Kresse G and Joubert J 1999 Phys. Rev. B 59 1758 [19] Perdew J P, Burke S and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [20] Ceperley D M and Alder B 1980 Phys. Rev. Lett. 45 566 [21] Lidin S and Larsson A K 1995 J. Solid State Chem. 118 313 [22] Ghosh G and Asta M 2005 J. Mater. Res. 20 3102 [23] Blanco M A, Francisco E and Luana V 2004 Comput. Phys. Commun. 158 57 [24] Surucu G, Colakoglu K, Deligoz E and Ozisik H 2009 Intermetallics 18 286 [25] Murnaghan F D 1994 Prop. Acad. Sci. USA 50 244 [26] Brich F and Geophys J 1952 Research 57 227 [27] Zhou W, Liu L J and Wu P 2010 Intermetallics 18 922 [28] Subrahmanyam B 1972 Trans. Jpn. Inst. Met. 13 93 [29] Yu C, Liu J Y, Lu H, Li P L and Chen J M 2007 Intermetallics 15 1471 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|