Chin. Phys. Lett.  2014, Vol. 31 Issue (04): 047302    DOI: 10.1088/0256-307X/31/4/047302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Surface Plasmon Resonance and Raman Scattering Activity of the Au/AgxO/Ag Multilayer Film
ZHONG Yu-Ting, CHENG Zi-Qiang, MA Liang, WANG Jia-Hong, HAO Zhong-Hua**, WANG Qu-Quan**
Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072
Cite this article:   
ZHONG Yu-Ting, CHENG Zi-Qiang, MA Liang et al  2014 Chin. Phys. Lett. 31 047302
Download: PDF(677KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The nanostructured Au/AgxO/Ag sandwich multilayer films on quartz substrates are prepared by the magnetron sputtering method. The morphology, plasmon resonance and surface enhanced Raman scattering (SERS) activities of the multilayer films are studied. The resonant absorption wavelength of localized surface plasmon is tuned in a wide range from 618 nm to 993 nm by controlling the density of nanoparticles of Au and Ag. The SERS activity of the Au/AgxO/Ag multilayer films are enhanced over ~10 times compared with those of bare Ag and bare Au films. These properties may find a potential application in biosensor and bioimaging.
Received: 15 January 2014      Published: 25 March 2014
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  52.38.Bv (Rayleigh scattering; stimulated Brillouin and Raman scattering)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  81.15.Cd (Deposition by sputtering)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/4/047302       OR      https://cpl.iphy.ac.cn/Y2014/V31/I04/047302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHONG Yu-Ting
CHENG Zi-Qiang
MA Liang
WANG Jia-Hong
HAO Zhong-Hua
WANG Qu-Quan
[1] Zhang L et al 2011 ACS Nano 5 4407
[2] Sangpour P, Akhavan O and Moshfegh A Z 2007 Appl. Surf. Sci. 253 7438
[3] Groeneveld R H M, Sprik R and Lagendijk Ad 1990 Phys. Rev. Lett. 64 784
[4] Yi Z et al 2012 Thin Solid Films 520 2701
[5] Zhang Y L et al 2010 Chin. Sci. Bull. 55 3889
[6] Smith D D et al 1999 J. Appl. Phys. 86 6200
[7] Han J B et al 2006 J. Non-Cryst. Solids 352 386
[8] Cai W P et al 2001 Physica E 11 339
[9] Yang A et al 2012 Curr. Appl. Phys. 12 119
[10] Hsieh J H et al 2011 Thin Solid Films 519 7124
[11] Wang J Q et al 2009 Chin. Phys. B 18 4870
[12] Hamanaka Y et al 2004 Appl. Phys. Lett. 84 4938
[13] Liao H B et al 1997 Appl. Phys. Lett. 70 1
[14] Lee K C et al 2008 Surf. Coat. Technol. 202 5339
[15] Willets K A and Richard P V D 2007 Annu. Rev. Phys. Chem. 58 267
[16] Fei L et al 2008 ACS Nano 2 707
[17] Xu H X et al 1999 Phys. Rev. Lett. 83 4357
[18] Xu H X et al 2000 Phys. Rev. E 62 4318
[19] Ma Y W et al 2010 Chin. Phys. Lett. 27 064204
[20] Huang Q et al 2010 Chin. Phys. B 19 047304
[21] Sharma A K and Gupta B D 2006 Nanotechnology 17 124
[22] Liu C H et al 2008 Opt. Express 16 10701
[23] Wang J et al 2011 Sens. Actuators B 157 547
[24] Liu X L et al 2013 Nanoscale 5 5368
[25] Li J F et al 2010 Nature 464 392
[26] Kim J Y and Lee J S 2012 Bull. Korean Chem. Soc. 33 221
[27] Hariprasad E and Radhakrishnan T P 2013 Langmuir 29 13050
[28] Adichtchev S et al 2009 Phys. Rev. B 79 201402
[29] Wang Q Q et al 2000 Surf. Coat. Technol. 131 408
[30] Zhou L et al 2008 Chin. Phys. Lett. 25 1776
[31] Cui Y et al 2006 J. Phys. Chem. B 110 4002
[32] Zheng D et al 2010 Sens. Actuators B 148 247
[33] Wang L et al 2009 Talanta 78 265
[34] Alvarez-Puebla R A et al 2009 J. Colloid Interface Sci. 333 237
[35] Zhang T et al 2013 Mater. Trans. 54 947
[36] Wang C et al 2011 Appl. Surf. Sci. 258 1144
[37] Nie S and Steven R E 1997 Science 275 1102
[38] Lee P C and Meisel D 1982 J. Phys. Chem. C 86 3391
[39] Kneipp K et al 2006 Acc. Chem. Res. 39 443
[40] Mahmoud M A and El-Sayed M A 2013 J. Phys. Chem. Lett. 4 1541
[41] Mulvaney P 1996 Langmuir 12 788
[42] McLintock A, Hunt N and Wark A W 2011 Chem. Commun. 47 3757
[43] Kumar G V P et al 2007 J. Phys. Chem. C 111 4388
Related articles from Frontiers Journals
[1] Qirui Cui, Jinghua Liang, Yingmei Zhu, Xiong Yao, and Hongxin Yang. Quantum Anomalous Hall Effects Controlled by Chiral Domain Walls[J]. Chin. Phys. Lett., 2023, 40(3): 047302
[2] Xiang Xiong, Zhao-Yuan Zeng, Ruwen Peng, and Mu Wang. Directional Chiral Optical Emission by Electron-Beam-Excited Nano-Antenna[J]. Chin. Phys. Lett., 2023, 40(1): 047302
[3] Lili Zhao, Wenlu Lin, Y. J. Chung, K. W. Baldwin, L. N. Pfeiffer, and Yang Liu. Finite Capacitive Response at the Quantum Hall Plateau[J]. Chin. Phys. Lett., 2022, 39(9): 047302
[4] Yuan-Fang Yu, Ye Zhang, Fan Zhong, Lin Bai, Hui Liu, Jun-Peng Lu, and Zhen-Hua Ni. Highly Sensitive Mid-Infrared Photodetector Enabled by Plasmonic Hot Carriers in the First Atmospheric Window[J]. Chin. Phys. Lett., 2022, 39(5): 047302
[5] Gongzheng Chen, Jin Lan, Tai Min, and Jiang Xiao. Narrow Waveguide Based on Ferroelectric Domain Wall[J]. Chin. Phys. Lett., 2021, 38(8): 047302
[6] Yun-Fei Zou and Li Yu. Lower Exciton Number Strong Light Matter Interaction in Plasmonic Tweezers[J]. Chin. Phys. Lett., 2021, 38(2): 047302
[7] Jiancai Xue , Limin Lin , Zhang-Kai Zhou, and Xue-Hua Wang . Semi-Ellipsoid Nanoarray for Angle-Independent Plasmonic Color Printing[J]. Chin. Phys. Lett., 2020, 37(11): 047302
[8] Ping Jiang, Chao Li, Yuan-Yuan Chen, Gang Song, Yi-Lin Wang, Li Yu. Strong Exciton-Plasmon Coupling and Hybridization of Organic-Inorganic Exciton-Polaritons in Plasmonic Nanocavity[J]. Chin. Phys. Lett., 2019, 36(10): 047302
[9] Binbin Liu, Pujuan Ma, Wenjing Yu, Yadong Xu, Lei Gao. Tunable Bistability in the Goos–H?nchen Effect with Nonlinear Graphene[J]. Chin. Phys. Lett., 2019, 36(6): 047302
[10] Peng Sun, Wei-Wei Yu, Xiao-Hang Pan, Wei Wei, Yan Sun, Ning-Yi Yuan, Jian-Ning Ding, Wen-Chao Zhao, Xin Chen, Ning Dai. Fluorescence Enhancement of Metal-Capped Perovskite CH$_{3}$NH$_{3}$PbI$_{3}$ Thin Films[J]. Chin. Phys. Lett., 2017, 34(9): 047302
[11] A. R. Sadrolhosseini, M. Naseri, M. K. Halimah. Erratum: Polypyrrole Chitosan Cobalt Ferrite Nanoparticles Composite Layer for Measuring the Low Concentration of Fluorene Using Surface Plasmon Resonance [Chin. Phys. Lett. 34(2017)057501][J]. Chin. Phys. Lett., 2017, 34(8): 047302
[12] A. R. Sadrolhosseini, M. Naseri, M. K. Halimah. Polypyrrole Chitosan Cobalt Ferrite Nanoparticles Composite Layer for Measuring the Low Concentration of Fluorene Using Surface Plasmon Resonance[J]. Chin. Phys. Lett., 2017, 34(5): 047302
[13] Xin Sun. Generalized Hellmann–Feynman Theorem and Its Applications[J]. Chin. Phys. Lett., 2016, 33(12): 047302
[14] Chuan-Pu Liu, Xin-Li Zhu, Jia-Sen Zhang, Jun Xu, Yamin Leprince-Wang, Da-Peng Yu. Energy Levels of Coupled Plasmonic Cavities[J]. Chin. Phys. Lett., 2016, 33(08): 047302
[15] Xiao-Kun Zhao, Yuan Yao, Pei-Lin Lang, Hong-Lian Guo, Xi Shen, Yan-Guo Wang, Ri-Cheng Yu. Absorption Range and Energy Shift of Surface Plasmon in Au Monomer and Dimer[J]. Chin. Phys. Lett., 2016, 33(02): 047302
Viewed
Full text


Abstract