Chin. Phys. Lett.  2014, Vol. 31 Issue (04): 047301    DOI: 10.1088/0256-307X/31/4/047301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Effect of the Minimal Length on the Thermodynamics of Ultra-Relativistic Ideal Fermi Gas
ZHANG Xiu-Ming**, SUN Jiu-Xun, YANG Li
School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054
Cite this article:   
ZHANG Xiu-Ming, SUN Jiu-Xun, YANG Li 2014 Chin. Phys. Lett. 31 047301
Download: PDF(461KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on the generalized uncertainty principle, the thermodynamics of Fermi gas in high density, high pressure and high temperature are calculated. As the temperature and density increases, the energy and entropy becomes saturated and the pressure blows up without any bound. Using the conservation equation of the Robertson–Walker cosmology, we find that, when the energy exceeds the EH=β0?1/2c2Mp, the expansion cannot be driven by the photon gas and the fermion gas. This requires some new physical mechanism related to quantum gravity, such as tachyons and dilatons.
Received: 20 December 2013      Published: 25 March 2014
PACS:  73.43.-f (Quantum Hall effects)  
  11.15.-q (Gauge field theories)  
  02.40.Pc (General topology)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/4/047301       OR      https://cpl.iphy.ac.cn/Y2014/V31/I04/047301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Xiu-Ming
SUN Jiu-Xun
YANG Li
[1] Veneziano G 1986 Europhys. Lett. 2 199
[2] Gross D J and Mende P F 1988 Nucl. Phys. B 303 407
[3] Amati D, Ciafaloni M and Veneziano G 1989 Phys. Lett. B 216 41
[4] Konishi K, Paffuti G and Provero P 1990 Phys. Lett. B 234 276
[5] Guida R, Konishi K and Provero P 1991 Mod. Phys. Lett. A 6 1487
[6] Maggiore M 1993 Phys. Lett. B 319 83
[7] Maggiore M 1993 Phys. Lett. B 304 65
[8] Garay L J 1995 Int. J. Mod. Phys. A 10 145
[9] Kempf A, Mangano G and Mann R B 1995 Phys. Rev. D 52 1108
[10] Kempf A 1992 Lett. Math. Phys. 26 1
[11] Kempf A 1993 J. Math. Phys. 34 969
[12] Kempf A 1994 J. Math. Phys. 35 4483
[13] Das S and Vagenas E C 2008 Phys. Rev. Lett. 101 221301
[14] Brau F and Buisseret F 2006 Phys. Rev. D 74 036002
[15] Zhang X Y, Shao L J and Ma B Q 2011 Astropart. Phys. 34 840
[16] Chandra N and Chatterjee S 2012 Phys. Rev. D 85 045012
[17] Rama S K 2001 Phys. Lett. B 519 103
[18] Rama S K 2002 arXiv:hep-th/0204215
[19] Chang L N, Minic D, Okamura N and Takeuchi T 2002 Phys. Rev. D 65 125028
[20] Nozari K and Mehdipour S H 2007 Chaos Solitons Fractals 32 1637
[21] Fityo T V 2008 Phys. Lett. A 372 5872
[22] Wang P, Yang H T and Zhang X M 2010 J. High Energy Phys. 1008 043
[23] Wang P, Yang H T and Zhang X M 2012 Phys. Lett. B 718 265
[24] Greiner W, Neise L and St?cker H 1995 Thermodynamics and Statistical Physics (New York: Springer)
[25] McAllister L and Silverstein E 2008 Gen. Rel. Grav. 40 565
Related articles from Frontiers Journals
[1] Tian-Sheng Zeng, Liangdong Hu, and W. Zhu. Bosonic Halperin (441) Fractional Quantum Hall Effect at Filling Factor $\nu=2/5$[J]. Chin. Phys. Lett., 2022, 39(1): 047301
[2] Bin Han, Junjie Zeng, and Zhenhua Qiao. In-Plane Magnetization-Induced Corner States in Bismuthene[J]. Chin. Phys. Lett., 2022, 39(1): 047301
[3] Rubah Kausar, Chao Zheng, and Xin Wan. Level Statistics Crossover of Chiral Surface States in a Three-Dimensional Quantum Hall System[J]. Chin. Phys. Lett., 2021, 38(5): 047301
[4] Na Jiang and Min Lu. Topological Distillation by Principal Component Analysis in Disordered Fractional Quantum Hall States[J]. Chin. Phys. Lett., 2020, 37(11): 047301
[5] Qian Sui, Jiaxin Zhang, Suhua Jin, Yunyouyou Xia, and Gang Li. Model Hamiltonian for the Quantum Anomalous Hall State in Iron-Halogenide[J]. Chin. Phys. Lett., 2020, 37(9): 047301
[6] Ran Tao, Lin Li, Li-Jun Zhu, Yue-Dong Yan, Lin-Hai Guo, Xiao-Dong Fan, and Chang-Gan Zeng. Giant-Capacitance-Induced Wide Quantum Hall Plateaus in Graphene on LaAlO$_{3}$/SrTiO$_{3}$ Heterostructures[J]. Chin. Phys. Lett., 2020, 37(7): 047301
[7] Min Lu, Na Jiang, Xin Wan. Quasihole Tunneling in Disordered Fractional Quantum Hall Systems[J]. Chin. Phys. Lett., 2019, 36(8): 047301
[8] Qiu-Shi Wang, Bin Zhang, Wei-Zhu Yi, Meng-Nan Chen, Baigeng Wang, R. Shen. Impurity Effects at Surfaces of a Photon-Dressed Bi$_2$Se$_3$ Thin Film[J]. Chin. Phys. Lett., 2018, 35(10): 047301
[9] Shou-juan Zhang, Wei-xiao Ji, Chang-wen Zhang, Shu-feng Zhang, Ping Li, Sheng-shi Li, Shi-shen Yan. Discovery of Two-Dimensional Quantum Spin Hall Effect in Triangular Transition-Metal Carbides[J]. Chin. Phys. Lett., 2018, 35(8): 047301
[10] Ru Zheng, Rong-Qiang He, Zhong-Yi Lu. An Anderson Impurity Interacting with the Helical Edge States in a Quantum Spin Hall Insulator[J]. Chin. Phys. Lett., 2018, 35(6): 047301
[11] Xia-Yin Liu, Jia-Lu Wang, Wei You, Ting-Ting Wang, Hai-Yang Yang, Wen-He Jiao, Hong-Ying Mao, Li Zhang, Jie Cheng, Yu-Ke Li. Anisotropic Magnetoresistivity in Semimetal TaSb$_2$[J]. Chin. Phys. Lett., 2017, 34(12): 047301
[12] X.-X. Yuan, L. He, S.-T. Wang, D.-L. Deng, F. Wang, W.-Q. Lian, X. Wang, C.-H. Zhang, H.-L. Zhang, X.-Y. Chang, L.-M. Duan. Observation of Topological Links Associated with Hopf Insulators in a Solid-State Quantum Simulator[J]. Chin. Phys. Lett., 2017, 34(6): 047301
[13] Yu-Ying Zhu, Meng-Meng Bai, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Chang-Li Yang, Guang-Tong Liu, Li Lu. Coulomb-Dominated Oscillations in Fabry–Perot Quantum Hall Interferometers[J]. Chin. Phys. Lett., 2017, 34(6): 047301
[14] Xia Dai, Cong-Cong Le, Xian-Xin Wu, Sheng-Shan Qin, Zhi-Ping Lin, Jiang-Ping Hu. Topological Phase in Non-centrosymmetric Material NaSnBi[J]. Chin. Phys. Lett., 2016, 33(12): 047301
[15] Hua-Ling Yu, Zhang-Yin Zhai, Xin-Tian Bian. Integer Quantum Hall Effect in a Two-Orbital Square Lattice with Chern Number $C=2$[J]. Chin. Phys. Lett., 2016, 33(11): 047301
Viewed
Full text


Abstract