Chin. Phys. Lett.  2014, Vol. 31 Issue (03): 037302    DOI: 10.1088/0256-307X/31/3/037302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Trap States in Al2O3 InAlN/GaN Metal-Oxide-Semiconductor Structures by Frequency-Dependent Conductance Analysis
ZHANG Peng**, ZHAO Sheng-Lei, XUE Jun-Shuai, ZHANG Kai, MA Xiao-Hua, ZHANG Jin-Cheng, HAO Yue
Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071
Cite this article:   
ZHANG Peng, ZHAO Sheng-Lei, XUE Jun-Shuai et al  2014 Chin. Phys. Lett. 31 037302
Download: PDF(600KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a detailed analysis of the trap states in atomic layer deposition Al2O3/InAlN/GaN high electron mobility transistors grown by pulsed metal organic chemical vapor deposition. Trap densities, trap energies and time constants are determined by frequency-dependent conductance measurements. A high trap density of up to 1.6×1014 cm?2eV?1 is observed, which may be due to the lack of the cap layer causing the vulnerability to the subsequent high temperature annealing process.
Received: 06 November 2013      Published: 28 February 2014
PACS:  73.61.Ey (III-V semiconductors)  
  85.30.Tv (Field effect devices)  
  73.50.Gr (Charge carriers: generation, recombination, lifetime, trapping, mean free paths)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/3/037302       OR      https://cpl.iphy.ac.cn/Y2014/V31/I03/037302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Peng
ZHAO Sheng-Lei
XUE Jun-Shuai
ZHANG Kai
MA Xiao-Hua
ZHANG Jin-Cheng
HAO Yue
[1] Medjdoub F, Carlin J F, Gonschorek M, Feltin E, Py M A, Ducatteau D, Gaquiere C, Grandjean N and Kohn E 2006 IEDM Electron. Devices Meeting (San Francisco CA, 10–13 December 2006) p 129
[2] Kuzmik J 2001 IEEE Electron Device Lett. 22 510
[3] Xue J S, Zhang J C, Hou Y W, Zhou H, Zhang J F and Hao Y 2012 Appl. Phys. Lett. 100 013507
[4] Xue J S, Hao Y, Zhou X W, Zhang J C, Yang C K, Oua X X, Shia L Y, Wang H, Yang L A and Zhang J F 2011 J. Cryst. Growth 314 359
[5] Dong Seup L, Xiang G, Shiping G, Kopp D, Fay P, Palacios T 2011 IEEE Electron Device Lett. 32 1525
[6] Kuzmik J, Pozzovivo G, Ostermaier C, Strasser G, Pogany D, Gornik E, Carlin J F, Gonschorek M, Feltin E and Grandjean N 2009 J. Appl. Phys. 106 124503
[7] Lee H S, Piedra D, Sun M, Gao X, Guo S P and Palacios T 2012 IEEE Electron Device Lett. 33 982
[8] Corrion A L, Shinohara K, Regan D, Milosavljevic I, Hashimoto P and Willadsen P J 2011 IEEE Electron Device Lett. 32 1062
[9] Liu Z H, Ng G I, Arulkumaran S, Maung T, Teo K L, Foo S C and Sahmuganathan V 2010 IEEE Electron Device Lett. 31 96
[10] Liu Z H, Ng G I, Zhou H, Arulkumaran S and Maung Y K T 2011 Appl. Phys. Lett. 98 113506
[11] Yue Y Z, Hao Y, Feng Q, Zhang J C, Ma X H and Ni J Y 2007 Chin. Phys. Lett. 24 2419
[12] Hao Y, Yue Y Z, Feng Q, Zhang J C, Ma X H and Ni J Y 2007 Chin. J. Semicond. 28 1674
[13] Stoklas R, Gregusova D, Novak J, Vescan A and Kordos P 2008 Appl. Phys. Lett. 93 124103
[14] Miller E J, Dang X Z, Wieder H H, Asbeck P M and Yu E T 2000 J. Appl. Phys. 87 8070
[15] Freedsman J J, Kubo T and Egawa T 2011 Appl. Phys. Lett. 99 033504
[16] Kordos P, Stoklas R, Gregusova D, Gazi S and Novak J 2010 Appl. Phys. Lett. 96 013505
[17] Gregusova D, Stoklas R, Mizue C, Hori Y, Novak J and Hashizume T 2010 J. Appl. Phys. 107 106104
[18] Zhang K, Xue J S, Cao M Y, Yang L Y, Chen Y H, Zhang J C, Ma X H and Hao Y 2013 J. Appl. Phys. 113 174503
[19] Xue J S, Hao Y, Zhang, J C, Zhou X W, Liu Z Y, Ma J C and Lin Z Y 2011 Appl. Phys. Lett. 98 113504
[20] Miller E J, Dang X Z, Wieder H H, Asbeck P M, Yu E T, Sullivan G J and Redwing J M 2000 J. Appl. Phys. 87 8070
[21] Wang R H, Saunier P, Xing X, Lian C X, Gao X, Guo S, Snider G, Fay P, Jena D and Xing H L 2010 IEEE Electron Device Lett. 31 1383
Related articles from Frontiers Journals
[1] Da-Hong Su, Yun Xu, Wen-Xin Wang, Guo-Feng Song. Growth Control of High-Performance InAs/GaSb Type-II Superlattices via Optimizing the In/Ga Beam-Equivalent Pressure Ratio[J]. Chin. Phys. Lett., 2020, 37(3): 037302
[2] SiQin-GaoWa Bao, Jie-Jie Zhu, Xiao-Hua Ma, Bin Hou, Ling Yang, Li-Xiang Chen, Qing Zhu, Yue Hao. Effects of Low-Damage Plasma Treatment on the Channel 2DEG and Device Characteristics of AlGaN/GaN HEMTs[J]. Chin. Phys. Lett., 2020, 37(2): 037302
[3] Zhong-Qiu Xing, Yong-Jie Zhou, Yu-Huai Liu, Fang Wang. Reduction of Electron Leakage of AlGaN-Based Deep Ultraviolet Laser Diodes Using an Inverse-Trapezoidal Electron Blocking Layer[J]. Chin. Phys. Lett., 2020, 37(2): 037302
[4] Yi-Fu Wang, Mussaab I. Niass, Fang Wang, Yu-Huai Liu. Reduction of Electron Leakage in a Deep Ultraviolet Nitride Laser Diode with a Double-Tapered Electron Blocking Layer[J]. Chin. Phys. Lett., 2019, 36(5): 037302
[5] Xin Li, Yu Zhao, Min Xiong, Qi-Hua Wu, Yan Teng, Xiu-Jun Hao, Yong Huang, Shuang-Yuan Hu, Xin Zhu. High-Quality InSb Grown on Semi-Insulting GaAs Substrates by Metalorganic Chemical Vapor Deposition for Hall Sensor Application[J]. Chin. Phys. Lett., 2019, 36(1): 037302
[6] Zhi-Hui Wang, Xiao-Lan Wang, Jun-Lin Liu, Jian-Li Zhang, Chun-Lan Mo, Chang-Da Zheng, Xiao-Ming Wu, Guang-Xu Wang, Feng-Yi Jiang. Effect of Green Quantum Well Number on Properties of Green GaN-Based Light-Emitting Diodes[J]. Chin. Phys. Lett., 2018, 35(8): 037302
[7] Chu-Hong Yang, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Guang-Tong Liu, Chang-Li Yang, Li Lu. Transport Studies on GaAs/AlGaAs Two-Dimensional Electron Systems Modulated by Triangular Array of Antidots[J]. Chin. Phys. Lett., 2018, 35(7): 037302
[8] Ben Du, Yi Gu, Yong-Gang Zhang, Xing-You Chen, Ying-Jie Ma, Yan-Hui Shi, Jian Zhang. Wavelength Extended InGaAsBi Detectors with Temperature-Insensitive Cutoff Wavelength[J]. Chin. Phys. Lett., 2018, 35(7): 037302
[9] Xi-xia Tao, Chun-lan Mo, Jun-lin Liu, Jian-li Zhang, Xiao-lan Wang, Xiao-ming Wu, Long-quan Xu, Jie Ding, Guang-xu Wang, Feng-yi Jiang. Electroluminescence from the InGaN/GaN Superlattices Interlayer of Yellow LEDs with Large V-Pits Grown on Si (111)[J]. Chin. Phys. Lett., 2018, 35(5): 037302
[10] Ai-Xing Li, Chun-Lan Mo, Jian-Li Zhang, Xiao-Lan Wang, Xiao-Ming Wu, Guang-Xu Wang, Jun-Lin Liu, Feng-Yi Jiang. Effect of Mg-Preflow for p-AlGaN Electron Blocking Layer on the Electroluminescence of Green LEDs with V-Shaped Pits[J]. Chin. Phys. Lett., 2018, 35(2): 037302
[11] Xiang-Mi Zhan, Quan Wang, Kun Wang, Wei Li, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Cui-Mei Wang, Xiao-Liang Wang, Zhan-Guo Wang. Fast Electrical Detection of Carcinoembryonic Antigen Based on AlGaN/GaN High Electron Mobility Transistor Aptasensor[J]. Chin. Phys. Lett., 2017, 34(9): 037302
[12] Xiang-Mi Zhan, Mei-Lan Hao, Quan Wang, Wei Li, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Cui-Mei Wang, Xiao-Liang Wang, Zhan-Guo Wang. Highly Sensitive Detection of Deoxyribonucleic Acid Hybridization Using Au-Gated AlInN/GaN High Electron Mobility Transistor-Based Sensors[J]. Chin. Phys. Lett., 2017, 34(4): 037302
[13] Han-Han Lu, Jing-Ping Xu, Lu Liu. Interfacial and Electrical Properties of GaAs Metal-Oxide-Semiconductor Capacitor with ZrAlON as the Interfacial Passivation Layer[J]. Chin. Phys. Lett., 2017, 34(4): 037302
[14] Xue-Feng Zheng, Ao-Chen Wang, Xiao-Hui Hou, Ying-Zhe Wang, Hao-Yu Wen, Chong Wang, Yang Lu, Wei Mao, Xiao-Hua Ma, Yue Hao. Influence of the Diamond Layer on the Electrical Characteristics of AlGaN/GaN High-Electron-Mobility Transistors[J]. Chin. Phys. Lett., 2017, 34(2): 037302
[15] Feng Dai, Xue-Feng Zheng, Pei-Xian Li, Xiao-Hui Hou, Ying-Zhe Wang, Yan-Rong Cao, Xiao-Hua Ma, Yue Hao. The Transport Mechanisms of Reverse Leakage Current in Ultraviolet Light-Emitting Diodes[J]. Chin. Phys. Lett., 2016, 33(11): 037302
Viewed
Full text


Abstract