CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Trap States in Al2O3 InAlN/GaN Metal-Oxide-Semiconductor Structures by Frequency-Dependent Conductance Analysis |
ZHANG Peng**, ZHAO Sheng-Lei, XUE Jun-Shuai, ZHANG Kai, MA Xiao-Hua, ZHANG Jin-Cheng, HAO Yue |
Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071
|
|
Cite this article: |
ZHANG Peng, ZHAO Sheng-Lei, XUE Jun-Shuai et al 2014 Chin. Phys. Lett. 31 037302 |
|
|
Abstract We present a detailed analysis of the trap states in atomic layer deposition Al2O3/InAlN/GaN high electron mobility transistors grown by pulsed metal organic chemical vapor deposition. Trap densities, trap energies and time constants are determined by frequency-dependent conductance measurements. A high trap density of up to 1.6×1014 cm?2eV?1 is observed, which may be due to the lack of the cap layer causing the vulnerability to the subsequent high temperature annealing process.
|
|
Received: 06 November 2013
Published: 28 February 2014
|
|
PACS: |
73.61.Ey
|
(III-V semiconductors)
|
|
85.30.Tv
|
(Field effect devices)
|
|
73.50.Gr
|
(Charge carriers: generation, recombination, lifetime, trapping, mean free paths)
|
|
73.40.Qv
|
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
|
|
|
|
|
[1] Medjdoub F, Carlin J F, Gonschorek M, Feltin E, Py M A, Ducatteau D, Gaquiere C, Grandjean N and Kohn E 2006 IEDM Electron. Devices Meeting (San Francisco CA, 10–13 December 2006) p 129 [2] Kuzmik J 2001 IEEE Electron Device Lett. 22 510 [3] Xue J S, Zhang J C, Hou Y W, Zhou H, Zhang J F and Hao Y 2012 Appl. Phys. Lett. 100 013507 [4] Xue J S, Hao Y, Zhou X W, Zhang J C, Yang C K, Oua X X, Shia L Y, Wang H, Yang L A and Zhang J F 2011 J. Cryst. Growth 314 359 [5] Dong Seup L, Xiang G, Shiping G, Kopp D, Fay P, Palacios T 2011 IEEE Electron Device Lett. 32 1525 [6] Kuzmik J, Pozzovivo G, Ostermaier C, Strasser G, Pogany D, Gornik E, Carlin J F, Gonschorek M, Feltin E and Grandjean N 2009 J. Appl. Phys. 106 124503 [7] Lee H S, Piedra D, Sun M, Gao X, Guo S P and Palacios T 2012 IEEE Electron Device Lett. 33 982 [8] Corrion A L, Shinohara K, Regan D, Milosavljevic I, Hashimoto P and Willadsen P J 2011 IEEE Electron Device Lett. 32 1062 [9] Liu Z H, Ng G I, Arulkumaran S, Maung T, Teo K L, Foo S C and Sahmuganathan V 2010 IEEE Electron Device Lett. 31 96 [10] Liu Z H, Ng G I, Zhou H, Arulkumaran S and Maung Y K T 2011 Appl. Phys. Lett. 98 113506 [11] Yue Y Z, Hao Y, Feng Q, Zhang J C, Ma X H and Ni J Y 2007 Chin. Phys. Lett. 24 2419 [12] Hao Y, Yue Y Z, Feng Q, Zhang J C, Ma X H and Ni J Y 2007 Chin. J. Semicond. 28 1674 [13] Stoklas R, Gregusova D, Novak J, Vescan A and Kordos P 2008 Appl. Phys. Lett. 93 124103 [14] Miller E J, Dang X Z, Wieder H H, Asbeck P M and Yu E T 2000 J. Appl. Phys. 87 8070 [15] Freedsman J J, Kubo T and Egawa T 2011 Appl. Phys. Lett. 99 033504 [16] Kordos P, Stoklas R, Gregusova D, Gazi S and Novak J 2010 Appl. Phys. Lett. 96 013505 [17] Gregusova D, Stoklas R, Mizue C, Hori Y, Novak J and Hashizume T 2010 J. Appl. Phys. 107 106104 [18] Zhang K, Xue J S, Cao M Y, Yang L Y, Chen Y H, Zhang J C, Ma X H and Hao Y 2013 J. Appl. Phys. 113 174503 [19] Xue J S, Hao Y, Zhang, J C, Zhou X W, Liu Z Y, Ma J C and Lin Z Y 2011 Appl. Phys. Lett. 98 113504 [20] Miller E J, Dang X Z, Wieder H H, Asbeck P M, Yu E T, Sullivan G J and Redwing J M 2000 J. Appl. Phys. 87 8070 [21] Wang R H, Saunier P, Xing X, Lian C X, Gao X, Guo S, Snider G, Fay P, Jena D and Xing H L 2010 IEEE Electron Device Lett. 31 1383 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|