Chin. Phys. Lett.  2014, Vol. 31 Issue (03): 037301    DOI: 10.1088/0256-307X/31/3/037301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Directional Plasmon Filtering in a Two-Dimensional Electron Gas Embedded in High-Index Crystallographic Planes
CHEN Jian, XU Huai-Zhe**
State Key Laboratory of Software Development Environment and Department of Physics, Beihang University, Beijing 100191
Cite this article:   
CHEN Jian, XU Huai-Zhe 2014 Chin. Phys. Lett. 31 037301
Download: PDF(651KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study theoretically the plasmon excitations in a two-dimensional electron gas (2DEG) with spin-orbit interactions (SOIs) embedded in a (11n) crystallographic plane. We demonstrate that the energy spectra and dielectric functions between the 2DEGs embedded in different crystallographic planes can be related by a unitary transformation. Using the unitary transformation, we find that the anisotropy of plasmon excitations and the directional plasmon filtering (DPF) can be tuned by changing the strengths of SOIs in the high-index planes. There are two advantageous directions [110] and [nn2] for plasmon propagation. Moreover, the anisotropy and the DPF can be smeared out by tuning the strength ratio α/β between the Rashba SOI and the Dresselhaus SOI.
Received: 06 September 2013      Published: 28 February 2014
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  72.25.Dc (Spin polarized transport in semiconductors)  
  73.21.Fg (Quantum wells)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/3/037301       OR      https://cpl.iphy.ac.cn/Y2014/V31/I03/037301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Jian
XU Huai-Zhe
[1] ?uti? I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323
[2] Averkiev N S and Golub L E 1999 Phys. Rev. B 60 15582
[3] Yu Z G and Krishnamurthy S 2005 Phys. Rev. B 71 245312
[4] Li J, Yang W and Chang K 2009 Phys. Rev. B 80 035303
[5] Li J, Chang K and Peeters F M 2009 Phys. Rev. B 80 153307
[6] Kato Y K, Myers R C, Gossard A C and Awschalom D D 2004 Science 306 1910
[7] Wunderlich J, Kaestner B, Sinova J and Jungwirth T 2005 Phys. Rev. Lett. 94 047204
[8] Yang W and Chang K 2008 Phys. Rev. Lett. 100 056602
[9] Bychkov Yu A and Rashba é I 1984 JETP Lett. 39 78
[10] Dresselhaus G 1955 Phys. Rev. 100 580
[11] D'yakonov M I and Kachorovskii V Yu 1986 Sov. Phys. Semicond. 20 110
[12] R?ssler U 1989 High Magnetic Fields Semiconductor Physics II (Berlin Heidelberg: Springer-Verlag) p 376
[13] Sheng J S and Chang K 2006 Phys. Rev. B 74 235315
[14] Stano P and Fabian J 2006 Phys. Rev. Lett. 96 186602
[15] Moser J, Matos-Abiague A, Schuh D, Wegscheider W, Fabian J and Weiss D 2007 Phys. Rev. Lett. 99 056601
[16] Badalyan S M, Matos-Abiague A, Vignale G and Fabian J 2009 Phys. Rev. B 79 205305
[17] Ullrich C A and Flatte M E 2003 Phys. Rev. B 68 235310
[18] Li C and Wu X G 2008 Appl. Phys. Lett. 93 251501
[19] Das B, Miller D C and Datta S 1989 Phys. Rev. B 39 1411
[20] Ganichev S D, Bel'kov V V, Golub L E, Ivchenko E L, Schneider P, Giglberger S, Eroms J, DeBoeck J, Borghs G, Wegscheider W, Weiss D and Prettl W 2004 Phys. Rev. Lett. 92 256601
[21] Yang W and Chang K 2006 Phys. Rev. B 73 113303
[22] Giglberger S, Golub L E, Bel'kov V V, Danilov S N, Schuh D, Gerl Ch, Rohlfing F, Stahl J, Wegscheider W, Weiss D, Prettl W and Ganichev S D 2007 Phys. Rev. B 75 035327
[23] Eppenga R and Schuurmans M F H 1988 Phys. Rev. B 37 10923
[24] Pikus F G and Pikus G E 1995 Phys. Rev. B 51 16928
[25] Averkiev N S, Golub L E and Willander M 2002 J. Phys.: Condens. Matter 14 R271
[26] Tudorovskiy T and Averkiev N S 2002 JETP Lett. 75 552
[27] Wang M, Chang K, Wang L G, Dai N and Peeters F M 2009 Nanotechnology 20 365202
[28] Pletyukhov M and Gritsev V 2006 Phys. Rev. B 74 045307
Related articles from Frontiers Journals
[1] Qirui Cui, Jinghua Liang, Yingmei Zhu, Xiong Yao, and Hongxin Yang. Quantum Anomalous Hall Effects Controlled by Chiral Domain Walls[J]. Chin. Phys. Lett., 2023, 40(3): 037301
[2] Xiang Xiong, Zhao-Yuan Zeng, Ruwen Peng, and Mu Wang. Directional Chiral Optical Emission by Electron-Beam-Excited Nano-Antenna[J]. Chin. Phys. Lett., 2023, 40(1): 037301
[3] Lili Zhao, Wenlu Lin, Y. J. Chung, K. W. Baldwin, L. N. Pfeiffer, and Yang Liu. Finite Capacitive Response at the Quantum Hall Plateau[J]. Chin. Phys. Lett., 2022, 39(9): 037301
[4] Yuan-Fang Yu, Ye Zhang, Fan Zhong, Lin Bai, Hui Liu, Jun-Peng Lu, and Zhen-Hua Ni. Highly Sensitive Mid-Infrared Photodetector Enabled by Plasmonic Hot Carriers in the First Atmospheric Window[J]. Chin. Phys. Lett., 2022, 39(5): 037301
[5] Gongzheng Chen, Jin Lan, Tai Min, and Jiang Xiao. Narrow Waveguide Based on Ferroelectric Domain Wall[J]. Chin. Phys. Lett., 2021, 38(8): 037301
[6] Yun-Fei Zou and Li Yu. Lower Exciton Number Strong Light Matter Interaction in Plasmonic Tweezers[J]. Chin. Phys. Lett., 2021, 38(2): 037301
[7] Jiancai Xue , Limin Lin , Zhang-Kai Zhou, and Xue-Hua Wang . Semi-Ellipsoid Nanoarray for Angle-Independent Plasmonic Color Printing[J]. Chin. Phys. Lett., 2020, 37(11): 037301
[8] Ping Jiang, Chao Li, Yuan-Yuan Chen, Gang Song, Yi-Lin Wang, Li Yu. Strong Exciton-Plasmon Coupling and Hybridization of Organic-Inorganic Exciton-Polaritons in Plasmonic Nanocavity[J]. Chin. Phys. Lett., 2019, 36(10): 037301
[9] Binbin Liu, Pujuan Ma, Wenjing Yu, Yadong Xu, Lei Gao. Tunable Bistability in the Goos–H?nchen Effect with Nonlinear Graphene[J]. Chin. Phys. Lett., 2019, 36(6): 037301
[10] Peng Sun, Wei-Wei Yu, Xiao-Hang Pan, Wei Wei, Yan Sun, Ning-Yi Yuan, Jian-Ning Ding, Wen-Chao Zhao, Xin Chen, Ning Dai. Fluorescence Enhancement of Metal-Capped Perovskite CH$_{3}$NH$_{3}$PbI$_{3}$ Thin Films[J]. Chin. Phys. Lett., 2017, 34(9): 037301
[11] A. R. Sadrolhosseini, M. Naseri, M. K. Halimah. Erratum: Polypyrrole Chitosan Cobalt Ferrite Nanoparticles Composite Layer for Measuring the Low Concentration of Fluorene Using Surface Plasmon Resonance [Chin. Phys. Lett. 34(2017)057501][J]. Chin. Phys. Lett., 2017, 34(8): 037301
[12] A. R. Sadrolhosseini, M. Naseri, M. K. Halimah. Polypyrrole Chitosan Cobalt Ferrite Nanoparticles Composite Layer for Measuring the Low Concentration of Fluorene Using Surface Plasmon Resonance[J]. Chin. Phys. Lett., 2017, 34(5): 037301
[13] Xin Sun. Generalized Hellmann–Feynman Theorem and Its Applications[J]. Chin. Phys. Lett., 2016, 33(12): 037301
[14] Chuan-Pu Liu, Xin-Li Zhu, Jia-Sen Zhang, Jun Xu, Yamin Leprince-Wang, Da-Peng Yu. Energy Levels of Coupled Plasmonic Cavities[J]. Chin. Phys. Lett., 2016, 33(08): 037301
[15] Xiao-Kun Zhao, Yuan Yao, Pei-Lin Lang, Hong-Lian Guo, Xi Shen, Yan-Guo Wang, Ri-Cheng Yu. Absorption Range and Energy Shift of Surface Plasmon in Au Monomer and Dimer[J]. Chin. Phys. Lett., 2016, 33(02): 037301
Viewed
Full text


Abstract