Chin. Phys. Lett.  2014, Vol. 31 Issue (03): 030303    DOI: 10.1088/0256-307X/31/3/030303
GENERAL |
Charge-Related SQUID and Tunable Phase-Slip Flux Qubit
ZHAO Hu, LI Tie-Fu, LIU Jian-She, CHEN Wei**
Institute of Microelectronics, Tsinghua National Laboratory of Information Science and Technology, Tsinghua University, Beijing 100084
Cite this article:   
ZHAO Hu, LI Tie-Fu, LIU Jian-She et al  2014 Chin. Phys. Lett. 31 030303
Download: PDF(479KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A phase-slip flux qubit, exactly dual to a charge qubit, is composed of a superconducting loop interrupted by a phase-slip junction. We propose a tunable phase-slip flux qubit by replacing the phase-slip junction with a charge-related superconducting quantum interference device (SQUID) consisting of two phase-slip junctions connected in series with a superconducting island. This charge-SQUID acts as an effective phase-slip junction controlled by the applied gate voltage and can be used to tune the energy-level splitting of the qubit. In addition, we show that a large inductance inserted in the loop can reduce the inductance energy and consequently suppress the dominating flux noise of the phase-slip flux qubit. This enhanced phase-slip flux qubit is exactly dual to a transmon qubit.
Received: 15 November 2013      Published: 28 February 2014
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  85.25.Dq (Superconducting quantum interference devices (SQUIDs))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/3/030303       OR      https://cpl.iphy.ac.cn/Y2014/V31/I03/030303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHAO Hu
LI Tie-Fu
LIU Jian-She
CHEN Wei
[1] You J Q and Nori F 2005 Phys. Today 58 42
You J Q and Nori F 2011 Nature 474 589
[2] Clarke J and Wilhelm F K 2008 Nature 453 1031
[3] Josephson B D 1962 Phys. Lett. 1 251
[4] Nakamura Y, Pashkin Y A and Tsai J S 1999 Nature 398 786
[5] Liao Q H, Fang G Y, Wang J C, Ahmad M A and Liu S T 2011 Chin. Phys. Lett. 28 060307
[6] Mooij J E, Orlando T P, Levitov L, Tian L, Van der Wal C H and Lloyd S 1999 Science 285 1036
[7] Van der Wal C H, Haar A C J T, Wilhelm F K, Schouten R N, Harmans C J P M, Orlando T P, Lloyd S and Mooij J E 2000 Science 290 773
[8] Friedman J R, Patel V, Chen W, Tolpygo S K and Lukens J E 2000 Nature 406 43
[9] Martinis J M, Nam S and Aumentado J 2002 Phys. Rev. Lett. 89 117901
[10] Yu Y, Han S Y, Chu X, Chu S I and Wang Z 2002 Science 296 889
[11] Vion D, Aassime A, Cottet A, Joyez P, Pothier H, Urbina C, Esteve D and Devoret M H 2002 Science 296 886
[12] DiVincenzo D P, Brito F and Koch R H 2006 Phys. Rev. B 74 014514
[13] You J Q, Hu X D, Ashhab S and Nori F 2007 Phys. Rev. B 75 140515
[14] Steffen M, Kumar S, DiVincenzo D, Rozen J R, Keefe G A, Rothwell M B and Ketchen M B 2010 Phys. Rev. Lett. 105 100502
[15] Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Phys. Rev. A 76 042319
[16] Manucharyan V E, Koch J, Glazman L I and Devoret M 2009 Science 326 113
[17] Bezryadin A, Lau C N and Tinkham M 2000 Nature 404 971
[18] Tinkham M 1996 Introduction Superconductivity 2nd edn (New York: McGraw-Hill) vol 1 chap 8 p 288
[19] Mooij J E and Nazarov Y V 2006 Nat. Phys. 2 169
[20] Mooij J E and Harmans C J P M 2005 New J. Phys. 7 219
[21] Hriscu A M and Nazarov Y V 2011 Phys. Rev. B 83 174511
[22] Sacépé B, Chapelier C, Baturina T I, Vinokur V M, Baklanov M R and Sanquer M 2010 Nat. Commun. 1 140
[23] Sacépé B, Dubouchet T, Chapelier C, Sanquer M, Ovadia M, Shahar D, Feigel'man M and Loffe L 2011 Nat. Phys. 7 239
[24] Astafiev O V, Loffe L B, Kafanov S, Pashkin Y A, Arutyunov K Y, Shahar D, Cohen O and Tsai J S 2012 Nature 484 355
[25] Cong S H, Wang Y W, Sun G Z, Chen J, Yu Y and Wu P H 2011 Chin. Phys. B 20 050316
[26] Hua T, Xu W W, Shi J X, An D Y, Sun G Z, Yu Y and Wu P H 2012 Chin. Phys. B 21 098501
[27] Hongisto T T and Zorin A B 2012 Phys. Rev. Lett. 108 097001
Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 030303
[2] Wen Zheng, Jianwen Xu, Zhuang Ma, Yong Li, Yuqian Dong, Yu Zhang, Xiaohan Wang, Guozhu Sun, Peiheng Wu, Jie Zhao, Shaoxiong Li, Dong Lan, Xinsheng Tan, and Yang Yu. Measuring Quantum Geometric Tensor of Non-Abelian System in Superconducting Circuits[J]. Chin. Phys. Lett., 2022, 39(10): 030303
[3] Zhi-Jin Tao, Li-Geng Yu, Peng Xu, Jia-Yi Hou, Xiao-Dong He, and Ming-Sheng Zhan. Efficient Two-Dimensional Defect-Free Dual-Species Atom Arrays Rearrangement Algorithm with Near-Fewest Atom Moves[J]. Chin. Phys. Lett., 2022, 39(8): 030303
[4] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 030303
[5] Qi Zhang and Guang-Ming Zhang. Noise-Induced Entanglement Transition in One-Dimensional Random Quantum Circuits[J]. Chin. Phys. Lett., 2022, 39(5): 030303
[6] Xinran Ma, Z. C. Tu, and Shi-Ju Ran. Deep Learning Quantum States for Hamiltonian Estimation[J]. Chin. Phys. Lett., 2021, 38(11): 030303
[7] Zhiling Wang, Zenghui Bao, Yukai Wu , Yan Li , Cheng Ma , Tianqi Cai , Yipu Song , Hongyi Zhang, and Luming Duan. Improved Superconducting Qubit State Readout by Path Interference[J]. Chin. Phys. Lett., 2021, 38(11): 030303
[8] Ao-Lin Guo , Tao Tu, Le-Tian Zhu , and Chuan-Feng Li. High-Fidelity Geometric Gates with Single Ions Doped in Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 030303
[9] Bo Gong , Tao Tu, Ao-Lin Guo , Le-Tian Zhu , and Chuan-Feng Li. A Noise-Robust Pulse for Excitation Transfer in a Multi-Mode Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(4): 030303
[10] Hongye Yu, Frank Wilczek, and Biao Wu. Quantum Algorithm for Approximating Maximum Independent Sets[J]. Chin. Phys. Lett., 2021, 38(3): 030303
[11] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 030303
[12] Y.-K. Wu  and L.-M. Duan. A Two-Dimensional Architecture for Fast Large-Scale Trapped-Ion Quantum Computing[J]. Chin. Phys. Lett., 2020, 37(7): 030303
[13] Frank Wilczek, Hong-Ye Hu, Biao Wu. Resonant Quantum Search with Monitor Qubits[J]. Chin. Phys. Lett., 2020, 37(5): 030303
[14] Xing-Yu Zhu, Tao Tu, Ao-Lin Guo, Zong-Quan Zhou, Guang-Can Guo. Measurement of Spin Singlet-Triplet Qubit in Quantum Dots Using Superconducting Resonator[J]. Chin. Phys. Lett., 2020, 37(2): 030303
[15] Tong Wu, Yuxuan Zhou, Yuan Xu, Song Liu, Jian Li. Landau–Zener–Stückelberg Interference in Nonlinear Regime[J]. Chin. Phys. Lett., 2019, 36(12): 030303
Viewed
Full text


Abstract