Chin. Phys. Lett.  2014, Vol. 31 Issue (03): 030302    DOI: 10.1088/0256-307X/31/3/030302
GENERAL |
Collective Excitation and Quantum Depletion of a Bose–Einstein Condensate in a Periodic Array of Quantum Wells
XUE Rui1,2,3,4, LI Wei-Dong5, LIANG Zhao-Xin6**
1Key Laboratory of Instrumentation Science and Dynamic Measurement, North University of China, Taiyuan 030051
2National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan 030051
3Department of Physics, North University of China, Taiyuan 030051
4Engineering Technology Research Center of Shanxi Province for Opto-Electronic Information and Instrument, North University of China, Taiyuan 030051
5Institute of Theoretical Physics and Department of Physics, Shanxi University, Taiyuan 030006
6Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article:   
XUE Rui, LI Wei-Dong, LIANG Zhao-Xin 2014 Chin. Phys. Lett. 31 030302
Download: PDF(573KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract With the help of a set of exact closed-form solutions to the stationary Gross–Pitaevskii (GP) equation, we calculate the collective excitation and quantum depletion of a weakly interacting Bose gas in the presence of a periodic array of quantum wells. The excitation spectrum (Bogoliubov spectrum) is obtained from the solution of the linearized time-dependent GP equation, which develops energy bands j( p) periodic in quasi-momentum space. Moreover, we calculate the excitation strengths Zj( p) relative to the density operator and then the dynamic structure factor S( p,ω). Accordingly, the analytical expressions of quantum depletion of the system are obtained. We find that the quantum depletion is enhanced when the interatomic interactions become larger and the potential is sufficiently deep. The conditions for the possible experimental realization of our scenario are also proposed.
Received: 13 December 2013      Published: 28 February 2014
PACS:  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  67.10.-j (Quantum fluids: general properties)  
  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/3/030302       OR      https://cpl.iphy.ac.cn/Y2014/V31/I03/030302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XUE Rui
LI Wei-Dong
LIANG Zhao-Xin
[1] Bloch I 2005 Nat. Phys. 1 23
[2] Morsch O and Oberthaler M 2006 Rev. Mod. Phys. 78 179
[3] Bloch I et al 2008 Rev. Mod. Phys. 80 885
[4] Greiner M et al 2002 Nature 415 39
[5] Morsch O et al 2001 Phys. Rev. Lett. 87 140402
[6] Kr?mer M et al 2002 Phys. Rev. Lett. 88 180404
[7] Weitz M et al 2004 Phys. Rev. A 70 043414
Ritt G et al 2006 Phys. Rev. A 74 063622
[8] Salger T et al 2007 Phys. Rev. Lett. 99 190405
Salger T 2011 Phys. Rev. Lett. 107 240401
[9] Kr?mer M et al 2003 Eur. Phys. J. D 27 247
[10] Wu B and Niu Q 2001 Phys. Rev. A 64 061603(R)
[11] Liang Z X et al 2008 Phys. Rev. A 78 023622
[12] Bronski J C et al 2001 Phys. Rev. Lett. 86 1402
[13] Bronski J C et al 2001 Phys. Rev. E 63 036612
[14] Li W D and Smerzi A 2004 Phys. Rev. E 70 016605
Li W D 2006 Phys. Rev. A 74 063612
[15] Xue R et al 2009 J. Phys. B: At. Mol. Opt. Phys. 42 085302
[16] Xue R et al 2009 Chin. Phys. Lett. 26 070303
[17] Hu Y and Liang Z X 2011 Phys. Rev. Lett. 107 110401
[18] Smerzi A and Trombettoni A 2003 Phys. Rev. A 68 023613
[19] Ozeri R et al 1996 Phys. Rev. Lett. 77 187
[20] Du X et al 2010 New J. Phys. 12 083025
[21] Stenger J et al 1999 Phys. Rev. Lett. 82 4569
[22] Steinhauer J et al 2002 Phys. Rev. Lett. 88 120407
[23] Steinhauer J et al 2003 Phys. Rev. Lett. 90 060404
[24] Campbell G et al 2006 Science 313 649
Related articles from Frontiers Journals
[1] Rong Du, Jian-Chong Xing, Bo Xiong, Jun-Hui Zheng, and Tao Yang. Quench Dynamics of Bose–Einstein Condensates in Boxlike Traps[J]. Chin. Phys. Lett., 2022, 39(7): 030302
[2] Cong Liu, Junjie Wang, Xin Deng, Xiaomeng Wang, Chris J. Pickard, Ravit Helled, Zhongqing Wu, Hui-Tian Wang, Dingyu Xing, and Jian Sun. Partially Diffusive Helium-Silica Compound under High Pressure[J]. Chin. Phys. Lett., 2022, 39(7): 030302
[3] Fan Zhang and Lan Yin. Phonon Stability of Quantum Droplets in Dipolar Bose Gases[J]. Chin. Phys. Lett., 2022, 39(6): 030302
[4] Jun-Tao He, Ping-Ping Fang, and Ji Lin. Multi-Type Solitons in Spin-Orbit Coupled Spin-1 Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2022, 39(2): 030302
[5] Peng Gao, Zeyu Wu, Zhan-Ying Yang, and Wen-Li Yang. Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2021, 38(9): 030302
[6] Yingda Chen, Dong Zhang, and Kai Chang. Exciton Vortices in Two-Dimensional Hybrid Perovskite Monolayers[J]. Chin. Phys. Lett., 2020, 37(11): 030302
[7] Gui-Hao Jia, Yu Xu, Xiao Kong, Cui-Xian Guo, Si-Lei Liu, Su-Peng Kou. Emergent Quantum Dynamics of Vortex-Line under Linear Local Induction Approximation[J]. Chin. Phys. Lett., 2019, 36(12): 030302
[8] Jian-Wen Zhou, Xiao-Xun Li, Rui Gao, Wen-Shan Qin, Hao-Hao Jiang, Tao-Tao Li, Ju-Kui Xue. Modulational Instability of Trapped Two-Component Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2019, 36(9): 030302
[9] Lei Du, Zhihao Xu, Chuanhao Yin, Liping Guo. Dynamical Evolution of an Effective Two-Level System with $\mathcal{PT}$ Symmetry[J]. Chin. Phys. Lett., 2018, 35(5): 030302
[10] Wei Qi, Zi-Hao Li, Zhao-Xin Liang. Modulational Instability of Dipolar Bose–Einstein Condensates in Optical Lattices with Three-Body Interactions[J]. Chin. Phys. Lett., 2018, 35(1): 030302
[11] Yan-Na Li, Wei-Dong Li. Phase Dissipation of an Open Two-Mode Bose–Einstein Condensate[J]. Chin. Phys. Lett., 2017, 34(7): 030302
[12] Xin Zhang, Zi-Fa Yu, Ju-Kui Xue. Coherence of Disordered Bosonic Gas with Two- and Three-Body Interactions[J]. Chin. Phys. Lett., 2016, 33(04): 030302
[13] WANG Long, YU Zi-Fa, XUE Ju-Kui. The Coherence of a Dipolar Condensate in a Harmonic Potential Superimposed to a Deep Lattice[J]. Chin. Phys. Lett., 2015, 32(06): 030302
[14] ZHANG Xiu-Ming, TIAN Chi. Effect of the Minimal Length on Bose–Einstein Condensation in the Relativistic Ideal Bose Gas[J]. Chin. Phys. Lett., 2015, 32(01): 030302
[15] YU Zi-Fa, ZHANG Ai-Xia, XUE Ju-Kui. Coherent Destruction of Tunneling of Dipolar Bosonic Gas[J]. Chin. Phys. Lett., 2014, 31(1): 030302
Viewed
Full text


Abstract