GENERAL |
|
|
|
|
Charge-Related SQUID and Tunable Phase-Slip Flux Qubit |
ZHAO Hu, LI Tie-Fu, LIU Jian-She, CHEN Wei** |
Institute of Microelectronics, Tsinghua National Laboratory of Information Science and Technology, Tsinghua University, Beijing 100084
|
|
Cite this article: |
ZHAO Hu, LI Tie-Fu, LIU Jian-She et al 2014 Chin. Phys. Lett. 31 030303 |
|
|
Abstract A phase-slip flux qubit, exactly dual to a charge qubit, is composed of a superconducting loop interrupted by a phase-slip junction. We propose a tunable phase-slip flux qubit by replacing the phase-slip junction with a charge-related superconducting quantum interference device (SQUID) consisting of two phase-slip junctions connected in series with a superconducting island. This charge-SQUID acts as an effective phase-slip junction controlled by the applied gate voltage and can be used to tune the energy-level splitting of the qubit. In addition, we show that a large inductance inserted in the loop can reduce the inductance energy and consequently suppress the dominating flux noise of the phase-slip flux qubit. This enhanced phase-slip flux qubit is exactly dual to a transmon qubit.
|
|
Received: 15 November 2013
Published: 28 February 2014
|
|
PACS: |
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
85.25.Dq
|
(Superconducting quantum interference devices (SQUIDs))
|
|
|
|
|
[1] You J Q and Nori F 2005 Phys. Today 58 42 You J Q and Nori F 2011 Nature 474 589 [2] Clarke J and Wilhelm F K 2008 Nature 453 1031 [3] Josephson B D 1962 Phys. Lett. 1 251 [4] Nakamura Y, Pashkin Y A and Tsai J S 1999 Nature 398 786 [5] Liao Q H, Fang G Y, Wang J C, Ahmad M A and Liu S T 2011 Chin. Phys. Lett. 28 060307 [6] Mooij J E, Orlando T P, Levitov L, Tian L, Van der Wal C H and Lloyd S 1999 Science 285 1036 [7] Van der Wal C H, Haar A C J T, Wilhelm F K, Schouten R N, Harmans C J P M, Orlando T P, Lloyd S and Mooij J E 2000 Science 290 773 [8] Friedman J R, Patel V, Chen W, Tolpygo S K and Lukens J E 2000 Nature 406 43 [9] Martinis J M, Nam S and Aumentado J 2002 Phys. Rev. Lett. 89 117901 [10] Yu Y, Han S Y, Chu X, Chu S I and Wang Z 2002 Science 296 889 [11] Vion D, Aassime A, Cottet A, Joyez P, Pothier H, Urbina C, Esteve D and Devoret M H 2002 Science 296 886 [12] DiVincenzo D P, Brito F and Koch R H 2006 Phys. Rev. B 74 014514 [13] You J Q, Hu X D, Ashhab S and Nori F 2007 Phys. Rev. B 75 140515 [14] Steffen M, Kumar S, DiVincenzo D, Rozen J R, Keefe G A, Rothwell M B and Ketchen M B 2010 Phys. Rev. Lett. 105 100502 [15] Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Phys. Rev. A 76 042319 [16] Manucharyan V E, Koch J, Glazman L I and Devoret M 2009 Science 326 113 [17] Bezryadin A, Lau C N and Tinkham M 2000 Nature 404 971 [18] Tinkham M 1996 Introduction Superconductivity 2nd edn (New York: McGraw-Hill) vol 1 chap 8 p 288 [19] Mooij J E and Nazarov Y V 2006 Nat. Phys. 2 169 [20] Mooij J E and Harmans C J P M 2005 New J. Phys. 7 219 [21] Hriscu A M and Nazarov Y V 2011 Phys. Rev. B 83 174511 [22] Sacépé B, Chapelier C, Baturina T I, Vinokur V M, Baklanov M R and Sanquer M 2010 Nat. Commun. 1 140 [23] Sacépé B, Dubouchet T, Chapelier C, Sanquer M, Ovadia M, Shahar D, Feigel'man M and Loffe L 2011 Nat. Phys. 7 239 [24] Astafiev O V, Loffe L B, Kafanov S, Pashkin Y A, Arutyunov K Y, Shahar D, Cohen O and Tsai J S 2012 Nature 484 355 [25] Cong S H, Wang Y W, Sun G Z, Chen J, Yu Y and Wu P H 2011 Chin. Phys. B 20 050316 [26] Hua T, Xu W W, Shi J X, An D Y, Sun G Z, Yu Y and Wu P H 2012 Chin. Phys. B 21 098501 [27] Hongisto T T and Zorin A B 2012 Phys. Rev. Lett. 108 097001 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|