Chin. Phys. Lett.  2014, Vol. 31 Issue (03): 030301    DOI: 10.1088/0256-307X/31/3/030301
GENERAL |
Ground-State Properties of Superfluid Fermi Gas in Fourier-Synthesized Optical Lattices
CHEN Yan1**, ZHANG Ke-Zhi1, WANG Xiao-Liang1, CHEN Yong2,3
1School of Physics and Electromechanical Engineering, Hexi University, Zhangye 734000
2Center of Soft Matter Physics and its Applications, Beihang University, Beijing 100191
3School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191
Cite this article:   
CHEN Yan, ZHANG Ke-Zhi, WANG Xiao-Liang et al  2014 Chin. Phys. Lett. 31 030301
Download: PDF(758KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By employing the balance condition between the lattice potential and the interatomic interaction, we study the ground state solutions of superfluid Fermi gases in Fourier-synthesized (FS) optical lattices. The average energy of the ground state, the atoms number, and the atom density distribution of the Fermi system are analytically derived along the Bose–Einstein condensation (BEC) side to the Bardeen–Cooper–Schrieffer (BCS) side. We analyze the properties of ground state solutions at both the BEC limit and unitarity in FS optical lattices. It is found that the relative phase α between the two lattice harmonics impacts greatly on the properties of the ground state of the superfluid Fermi gas. Especially in the BCS limit, when α=π/2, the average energy presents an exponential form with the increase of the potential depth of the lattice harmonics v2. Meanwhile, there exits a minimal value. Moreover, due to the Fermi pressure, the atom density distribution at unitarity is more outstretched than that in the BEC limit. The average energy at unitarity is apparently larger than that in the BEC limit. The properties of the ground state solution exhibit very different behaviors when the system transits from the BEC side to the BCS side.
Received: 16 November 2013      Published: 28 February 2014
PACS:  03.75.-b  
  05.30.Fk (Fermion systems and electron gas)  
  05.50.+q (Lattice theory and statistics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/3/030301       OR      https://cpl.iphy.ac.cn/Y2014/V31/I03/030301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Yan
ZHANG Ke-Zhi
WANG Xiao-Liang
CHEN Yong
[1] Chin J K et al 2006 Nature 443 961
[2] Xue J K and Zhang A X 2008 Phys. Rev. Lett. 101 180401
[3] Roati G et al 2004 Phys. Rev. Lett. 92 230402
[4] Rodriguez M and T?rm? P 2004 Phys. Rev. A 69 041602(R)
[5] Zhai H and Ho T L 2007 Phys. Rev. Lett. 99 100402
[6] Moon E G et al 2007 Phys. Rev. Lett. 99 230403
[7] Pitaevskii L P et al 2005 Phys. Rev. A 71 053602
[8] Koponen T et al 2006 Phys. Rev. A 73 033620
[9] Heiselberg H 2004 Phys. Rev. Lett. 93 040402
[10] Hu H et al 2004 Phys. Rev. Lett. 93 190403
[11] Watanabe G et al 2008 Phys. Rev. A 78 063619
[12] Orzel C et al 2001 Science 291 2386
[13] Cataliotti F S et al 2001 Science 293 843
[14] Burger S et al 2001 Phys. Rev. Lett. 86 4447
[15] Zhao X D et al 2007 Acta Phys. Sin. 56 6358 (in Chinese)
[16] Ma Y et al 2006 Acta Phys. Sin. 55 5623 (in Chinese)
[17] Bronski J C et al 2001 Phys. Rev. Lett. 86 1402
[18] Hai W et al 2000 Phys. Rev. A 61 052105
[19] Deconinck B et al 2001 Phys. Lett. A 283 177
[20] Theodorakis S and Leontidis E 1997 J. Phys. A 30 4835
[21] Barra F et al 2000 Phys. Rev. E 61 5852
[22] Hai W et al 2004 Physica A 335 445
Hai W et al 2005 EuroPhys. Lett. 71 28
[23] Salger T et al 2007 Phys. Rev. Lett. 99 190405
[24] Chen Y et al 2011 Physica A 390 1033
Chen Y et al 2010 J. Phys. B 43 225303
Chen Y et al 2009 J. Phys. B 42 185302
[25] Salger T et al 2009 Science 326 1241
[26] F?lling S et al 2007 Nature 448 1029
[27] Miller D E et al 2007 Phys. Rev. Lett. 99 070402
[28] Kim Y E and Zubarev A L 2004 Phys. Rev. A 70 033612
[29] Heiselberg H 2004 Phys. Rev. Lett. 93 040402
[30] Bulgac A and Bertsch G F 2005 Phys. Rev. Lett. 94 070401
[31] Manini N and Salasnich L 2005 Phys. Rev. A 71 033625
[32] Astrakharchik G E et al 2005 Phys. Rev. Lett. 95 030404
[33] Petrov D S et al 2004 Phys. Rev. Lett. 93 090404
[34] Chen H J and Xue J K 2008 Acta Phys. Sin. 57 3962 (in Chinese)
[35] Adnikari S K and Malomed B A 2007 Europhys. Lett. 79 50003
Adnikari S K and Malomed B A 2007 Phys. Rev. A 76 043626
Adnikari S K and Malomed B A 2009 Physica D 238 1402
Related articles from Frontiers Journals
[1] ZHANG Qi, GONG Jiang-Bin, OH Choo-Hiap. Synthetic Spin-Orbit Coupling in Two-Level Cold Atoms[J]. Chin. Phys. Lett., 2013, 30(8): 030301
[2] XIONG Na, LI Biao. Dynamics of Matter-Wave Solitons for Three-Dimensional Bose–Einstein Condensates with Time-Space Modulation[J]. Chin. Phys. Lett., 2012, 29(9): 030301
[3] CHEN Liang, , SHE Lei, LI Jiao-Mei, GAO Ke-Lin,. Kinetic Energy of Trapped Ions Cooled by Buffer Gas[J]. Chin. Phys. Lett., 2010, 27(6): 030301
[4] LIU Hong, HE Dai-Hai, LOU Sen-Yue, HE Xian-Tu. Bright Soliton Solutions in Degenerate Femi Gas near Feshbach Resonance[J]. Chin. Phys. Lett., 2009, 26(12): 030301
[5] LI Hong, WANG D. N.. Dark Soliton of a Growing Bose--Einstein Condensate in an External Trap[J]. Chin. Phys. Lett., 2008, 25(11): 030301
[6] YAN Hui, , YANG Guo-Qing, , WANG Jin, ZHAN Ming-Sheng,. Directly Trapping Atoms in a U-Shaped Magneto-Optical Trap Using a Mini Atom Chip[J]. Chin. Phys. Lett., 2008, 25(9): 030301
[7] KE Min, YAN Bo, LI Xiao-Lin, WANG Yu-Zhu. Guiding Neutral Atoms with Two Current-Carrying Wires and a Vertical Bias Field on the Atom Chip[J]. Chin. Phys. Lett., 2008, 25(3): 030301
[8] ZHANG Ai-Xia, XUE Ju-Kui. Dynamics of Bright/Dark Solitons in Bose--Einstein Condensates with Time-Dependent Scattering Length and External Potential[J]. Chin. Phys. Lett., 2008, 25(1): 030301
[9] WU Xiang-Yao, ZHANG Bai-Jun, LI Hai-Bo, LU Jing-Bin, LIU Xiao-Jing, WANG Li, ZHANG Chun-Li, LIU Bing, FAN Xi-Hui, GUO Yi-Qing. Quantum Theory of Electronic Double-Slit Diffraction[J]. Chin. Phys. Lett., 2007, 24(10): 030301
[10] WU Xiang-Yao, YANG Jing-Hai, LIU Xiao-Jing, WANG Li, LIU Bing, FAN Xi-Hui, GUO Yi-Qing. A New Approach of Quantum Mechanics for Neutron Single-Slit Diffraction[J]. Chin. Phys. Lett., 2007, 24(7): 030301
[11] DUAN Wen-Shan, CHEN Jian-Hong, YANG Hong-Juan, SHI Yu-Ren, WANG Hong-Yan. Nonlinear Wave in a Disc-Shaped Bose--Einstein Condensate[J]. Chin. Phys. Lett., 2006, 23(8): 030301
[12] LI Xiao-Lin, KE Min, TANG Jiu-Yao, ZHOU Shu-Yu, ZHOU Shan-Yu, WANG Yu-Zhu,. Trapping of Neutral 87Rb Atoms on an Atomchip[J]. Chin. Phys. Lett., 2005, 22(10): 030301
[13] ZHANG Jie-Fang, YANG Qin. Soliton Solutions in Bose--Einstein Condensates with Time-Dependent Atomic Scattering Length in an Expulsive Parabolic Potential[J]. Chin. Phys. Lett., 2005, 22(8): 030301
[14] WANG Qi-Sheng, DU Si-De, ZHOU Lu-Wei, CHEN Xiao-Shuang, BAO Liang-Hua. Detuning Effects in the One-Photon Mazer[J]. Chin. Phys. Lett., 2004, 21(9): 030301
[15] HE Xiao-Ling, DU Si-De, ZHOU Lu-Wei, WANG Qi-Sheng, CHEN Hao. Tunnelling of Two-Level Atoms in Two-Photon Mazer: Atomic Coherence Effect and Statistics of Cavity Fields[J]. Chin. Phys. Lett., 2004, 21(1): 030301
Viewed
Full text


Abstract