Chin. Phys. Lett.  2013, Vol. 30 Issue (9): 098102    DOI: 10.1088/0256-307X/30/9/098102
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Strain Distributions in Non-Polar a-Plane InxGa1?xN Epitaxial Layers on r-Plane Sapphire Extracted from X-Ray Diffraction
ZHAO Gui-Juan**, YANG Shao-Yan**, LIU Gui-Peng, LIU Chang-Bo, SANG Ling, GU Cheng-Yan, LIU Xiang-Lin, WEI Hong-Yuan, ZHU Qin-Sheng, WANG Zhan-Guo
1Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, P. O. Box 912, Beijing 100083
2Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, P. O. Box 912, Beijing 100083
Cite this article:   
ZHAO Gui-Juan, YANG Shao-Yan, LIU Gui-Peng et al  2013 Chin. Phys. Lett. 30 098102
Download: PDF(618KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By using x-ray diffraction analysis, we investigate the major structural parameters such as strain state and crystal quality of non-polar a-plane InxGa1?xN thin films grown on r-sapphire substrates by metalorganic chemical vapour deposition. The results of the inplane grazing incidence diffraction technique are analyzed and compared with a complementary out-of-plane high resolution x-ray diffraction technique. When the indium composition is low, the a-plane InxGa1?xN layer is tensile strain in the growth direction (a-axis) and compressive strain in the two in-plane directions (m-axis and c-axis). The strain status becomes contrary when the indium composition is high. The stress in the m-axis direction σyy is larger than that in the c-axis direction σzz. Furthermore, strain in the two in-plane directions decrease and the crystal quality becomes better with the growing of the InxGa1?xN film.
Received: 12 March 2013      Published: 21 November 2013
PACS:  81.05.Ea (III-V semiconductors)  
  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  
  81.15.Aa (Theory and models of film growth)  
  68.35.Gy (Mechanical properties; surface strains)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/9/098102       OR      https://cpl.iphy.ac.cn/Y2013/V30/I9/098102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHAO Gui-Juan
YANG Shao-Yan
LIU Gui-Peng
LIU Chang-Bo
SANG Ling
GU Cheng-Yan
LIU Xiang-Lin
WEI Hong-Yuan
ZHU Qin-Sheng
WANG Zhan-Guo
[1] Wu F, Craven M D, Lim S H and Speck J S 2003 J. Appl. Phys. 94 942
[2] Haskell B A, Wu F, Craven M D, Matsuda S, Fini P T, Fujii T, Fujito K, DenBaars S P, Speck J S and Nakamura S 2003 Appl. Phys. Lett. 83 644
[3] Melton W A and Pankove J I 1997 J. Cryst. Growth 178 168
[4] Craven M D, Lim S H, Wu F, Speck J S and DenBaars S P 2002 Appl. Phys. Lett. 81 469
[5] Huang H M, Ling S C, Chen J R, Ko T S, Li J C, Lu T C, Kuo H C and Wang S C 2010 J. Cryst. Growth 312 869
[6] Lasker M R, Ganguil T, Rahman A A, Arora A, Hatui N, Gokhale M R, Ghosh S and Bhattacharya A 2011 Appl. Phys. Lett. 98 181108
[7] Roder C, Einfeldt S, Figge S, Paskova T, Hommel D et al 2006 J. Appl. Phys. 100 103511
[8] Takeuchi T, Takeuchi H, Sota S, Sakai H, Amano H and Akasaki I 1997 Jpn. J. Appl. Phys. 36 L177
[9] Ding Z B, Wang Q, Wang K, Wang H, Chen T X, Zhang G Y and Yao S D 2007 Acta Phys. Sin. 56 2873 (in Chinese)
[10] Liu L, Wang L, Li D, Liu N Y, Li L, Cao W Y, Yang W, Wan C H, Chen W H, Du W H, Hu X D and Feng Z C 2011 J. Appl. Phys. 109 073106
[11] Laskar M R, Ganguli T, Rahman A A, Mukherjee A, Hatui N, Gokhale M R and Bhattacharya A 2011 J. Appl. Phys. 109 013107
[12] Kim K, Lambrecht Walter R L and Benjamin Segall 1996 Phys. Rev. B 53 16310
[13] Kung P, Sun C J, Saxler A, Ohsato H and Razeghi M 1994 J. Appl. Phys. 75 4515
[14] Jiang Z M, Jiang X M, Jiang W R, Jia Q J, Zheng W L and Qian D C 2000 Appl. Phys. Lett. 76 3397
[15] Zeimer U, Grenzer J, Pietsch U, Gramlich S, Bugge F, Smirnitzki V, Weyers M and Tr?nkle G 2001 J. Phys. D: Appl. Phys. 34 A183
[16] Grigorian S A, Grenzer J, Feranchuk S, Zeimer U and Pietsch U 2003 J. Phys. D: Appl. Phys. 36 A222
[17] Tan W S, Cai H L, Wu X S, Jiang S S, Zhen W L and Jia Q J 2005 J. Alloys Compd. 397 231
Related articles from Frontiers Journals
[1] Dong Pan, Huading Song, Shan Zhang, Lei Liu, Lianjun Wen, Dunyuan Liao, Ran Zhuo, Zhichuan Wang, Zitong Zhang, Shuai Yang, Jianghua Ying, Wentao Miao, Runan Shang, Hao Zhang, and Jianhua Zhao. In Situ Epitaxy of Pure Phase Ultra-Thin InAs-Al Nanowires for Quantum Devices[J]. Chin. Phys. Lett., 2022, 39(5): 098102
[2] Ding-Ming Huang, Jie-Yin Zhang, Jian-Huan Wang, Wen-Qi Wei, Zi-Hao Wang, Ting Wang, and Jian-Jun Zhang. Bufferless Epitaxial Growth of GaAs on Step-Free Ge (001) Mesa[J]. Chin. Phys. Lett., 2021, 38(6): 098102
[3] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers *[J]. Chin. Phys. Lett., 0, (): 098102
[4] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers[J]. Chin. Phys. Lett., 2020, 37(6): 098102
[5] Meng-Han Liu, Peng Chen, Zi-Li Xie, Xiang-Qian Xiu, Dun-Jun Chen, Bin Liu, Ping Han, Yi Shi, Rong Zhang, You-Dou Zheng, Kai Cheng, Li-Yang Zhang. Approach to Single-Mode Dominated Resonant Emission in GaN-Based Square Microdisks on Si[J]. Chin. Phys. Lett., 2020, 37(5): 098102
[6] Shen Yan, Xiao-Tao Hu, Jun-Hui Die, Cai-Wei Wang, Wei Hu, Wen-Liang Wang, Zi-Guang Ma, Zhen Deng, Chun-Hua Du, Lu Wang, Hai-Qiang Jia, Wen-Xin Wang, Yang Jiang, Guoqiang Li, Hong Chen. Surface Morphology Improvement of Non-Polar a-Plane GaN Using a Low-Temperature GaN Insertion Layer[J]. Chin. Phys. Lett., 2020, 37(3): 098102
[7] Jia-Ming Zeng, Xiao-Lan Wang, Chun-Lan Mo, Chang-Da Zheng, Jian-Li Zhang, Shuan Pan, Feng-Yi Jiang. Effect of Barrier Temperature on Photoelectric Properties of GaN-Based Yellow LEDs[J]. Chin. Phys. Lett., 2020, 37(3): 098102
[8] Shu-Zhe Mei, Quan Wang, Mei-Lan Hao, Jian-Kai Xu, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Xiao-Liang Wang, Feng-Qi Liu, Xian-Gang Xu, Zhan-Guo Wang. Flow Field and Temperature Field in GaN-MOCVD Reactor Based on Computational Fluid Dynamics Modeling[J]. Chin. Phys. Lett., 2018, 35(9): 098102
[9] Bing-zhen Chen, Yang Zhang, Qing Wang, Zhi-yong Wang. Photoelectric Property Improvement of 1.0-eV GaInNAs and Applications in Lattice-Matched Five-Junction Solar Cells[J]. Chin. Phys. Lett., 2018, 35(7): 098102
[10] Chang Wang, Wenwu Pan, Konstantin Kolokolov, Shumin Wang. Band Structure and Optical Gain of InGaAs/GaAsBi Type-II Quantum Wells Modeled by the $k\cdot p$ Model[J]. Chin. Phys. Lett., 2018, 35(5): 098102
[11] De-Sheng Zhao, Ran Liu, Kai Fu, Guo-Hao Yu, Yong Cai, Hong-Juan Huang, Yi-Qun Wang, Run-Guang Sun, Bao-Shun Zhang. An Al$_{0.25}$Ga$_{0.75}$N/GaN Lateral Field Emission Device with a Nano Void Channel[J]. Chin. Phys. Lett., 2018, 35(3): 098102
[12] Zhi-Yu Lin, Zhi-Bin Chen, Jin-Cheng Zhang, Sheng-Rui Xu, Teng Jiang, Jun Luo, Li-Xin Guo, Yue Hao. Polar Dependence of Threading Dislocation Density in GaN Films Grown by Metal-Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2018, 35(2): 098102
[13] Bo-Ting Liu, Ping Ma, Xi-Lin Li, Jun-Xi Wang, Jin-Min Li. Influence of Al Preflow Time on Surface Morphology and Quality of AlN and GaN on Si (111) Grown by MOCVD[J]. Chin. Phys. Lett., 2017, 34(5): 098102
[14] Bo-Ting Liu, Shi-Kuan Guo, Ping Ma, Jun-Xi Wang, Jin-Min Li. High-Quality and Strain-Relaxation GaN Epilayer Grown on SiC Substrates Using AlN Buffer and AlGaN Interlayer[J]. Chin. Phys. Lett., 2017, 34(4): 098102
[15] Hai-Long Yu, Hao-Yue Wu, Hai-Jun Zhu, Guo-Feng Song, Yun Xu. Molecular Beam Epitaxy of GaSb on GaAs Substrates with Compositionally Graded LT-GaAs$_{x}$Sb$_{1-x}$ Buffer Layers[J]. Chin. Phys. Lett., 2017, 34(1): 098102
Viewed
Full text


Abstract