CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Strain Distributions in Non-Polar a-Plane InxGa1?xN Epitaxial Layers on r-Plane Sapphire Extracted from X-Ray Diffraction |
ZHAO Gui-Juan**, YANG Shao-Yan**, LIU Gui-Peng, LIU Chang-Bo, SANG Ling, GU Cheng-Yan, LIU Xiang-Lin, WEI Hong-Yuan, ZHU Qin-Sheng, WANG Zhan-Guo |
1Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, P. O. Box 912, Beijing 100083 2Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, P. O. Box 912, Beijing 100083
|
|
Cite this article: |
ZHAO Gui-Juan, YANG Shao-Yan, LIU Gui-Peng et al 2013 Chin. Phys. Lett. 30 098102 |
|
|
Abstract By using x-ray diffraction analysis, we investigate the major structural parameters such as strain state and crystal quality of non-polar a-plane InxGa1?xN thin films grown on r-sapphire substrates by metalorganic chemical vapour deposition. The results of the inplane grazing incidence diffraction technique are analyzed and compared with a complementary out-of-plane high resolution x-ray diffraction technique. When the indium composition is low, the a-plane InxGa1?xN layer is tensile strain in the growth direction (a-axis) and compressive strain in the two in-plane directions (m-axis and c-axis). The strain status becomes contrary when the indium composition is high. The stress in the m-axis direction σyy is larger than that in the c-axis direction σzz. Furthermore, strain in the two in-plane directions decrease and the crystal quality becomes better with the growing of the InxGa1?xN film.
|
|
Received: 12 March 2013
Published: 21 November 2013
|
|
PACS: |
81.05.Ea
|
(III-V semiconductors)
|
|
81.15.-z
|
(Methods of deposition of films and coatings; film growth and epitaxy)
|
|
81.15.Aa
|
(Theory and models of film growth)
|
|
68.35.Gy
|
(Mechanical properties; surface strains)
|
|
|
|
|
[1] Wu F, Craven M D, Lim S H and Speck J S 2003 J. Appl. Phys. 94 942 [2] Haskell B A, Wu F, Craven M D, Matsuda S, Fini P T, Fujii T, Fujito K, DenBaars S P, Speck J S and Nakamura S 2003 Appl. Phys. Lett. 83 644 [3] Melton W A and Pankove J I 1997 J. Cryst. Growth 178 168 [4] Craven M D, Lim S H, Wu F, Speck J S and DenBaars S P 2002 Appl. Phys. Lett. 81 469 [5] Huang H M, Ling S C, Chen J R, Ko T S, Li J C, Lu T C, Kuo H C and Wang S C 2010 J. Cryst. Growth 312 869 [6] Lasker M R, Ganguil T, Rahman A A, Arora A, Hatui N, Gokhale M R, Ghosh S and Bhattacharya A 2011 Appl. Phys. Lett. 98 181108 [7] Roder C, Einfeldt S, Figge S, Paskova T, Hommel D et al 2006 J. Appl. Phys. 100 103511 [8] Takeuchi T, Takeuchi H, Sota S, Sakai H, Amano H and Akasaki I 1997 Jpn. J. Appl. Phys. 36 L177 [9] Ding Z B, Wang Q, Wang K, Wang H, Chen T X, Zhang G Y and Yao S D 2007 Acta Phys. Sin. 56 2873 (in Chinese) [10] Liu L, Wang L, Li D, Liu N Y, Li L, Cao W Y, Yang W, Wan C H, Chen W H, Du W H, Hu X D and Feng Z C 2011 J. Appl. Phys. 109 073106 [11] Laskar M R, Ganguli T, Rahman A A, Mukherjee A, Hatui N, Gokhale M R and Bhattacharya A 2011 J. Appl. Phys. 109 013107 [12] Kim K, Lambrecht Walter R L and Benjamin Segall 1996 Phys. Rev. B 53 16310 [13] Kung P, Sun C J, Saxler A, Ohsato H and Razeghi M 1994 J. Appl. Phys. 75 4515 [14] Jiang Z M, Jiang X M, Jiang W R, Jia Q J, Zheng W L and Qian D C 2000 Appl. Phys. Lett. 76 3397 [15] Zeimer U, Grenzer J, Pietsch U, Gramlich S, Bugge F, Smirnitzki V, Weyers M and Tr?nkle G 2001 J. Phys. D: Appl. Phys. 34 A183 [16] Grigorian S A, Grenzer J, Feranchuk S, Zeimer U and Pietsch U 2003 J. Phys. D: Appl. Phys. 36 A222 [17] Tan W S, Cai H L, Wu X S, Jiang S S, Zhen W L and Jia Q J 2005 J. Alloys Compd. 397 231 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|