Chin. Phys. Lett.  2013, Vol. 30 Issue (9): 097701    DOI: 10.1088/0256-307X/30/9/097701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Temperature Dependence of the AlN E1(To) Phonon Decay, Thermal Expansion and Strain Effect in AlN/Sapphire by Infrared Reflection
ZHOU Shu-Tong, YU Chen-Hui, ZHANG Bo**
National Lab for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083
Cite this article:   
ZHOU Shu-Tong, YU Chen-Hui, ZHANG Bo 2013 Chin. Phys. Lett. 30 097701
Download: PDF(660KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Infrared reflectivity measurement is carried out for AlN films on sapphire substrates. The frequencies of the symmetry optical phonon E1(TO) in the temperature range from 77 K to 500 K are reported by fitting the experimental reflectivity with the classical multi-oscillators model. Taking the lattice thermal expansion and Klemens process of the phonon decay into account, along with the strain effect introduced by thermal mismatch between the film and the substrate, the temperature effect on the frequency of the optical phonon E1(TO) is revealed. It is shown that the shift of frequency is mainly attributed to the decay process while the strain effect induced by thermal mismatch plays a non-negligible role in the outcomes of the strength and damping parameters.
Received: 07 January 2013      Published: 21 November 2013
PACS:  77.55.hd (AlN)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  63.20.K- (Phonon interactions)  
  77.80.bn (Strain and interface effects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/9/097701       OR      https://cpl.iphy.ac.cn/Y2013/V30/I9/097701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHOU Shu-Tong
YU Chen-Hui
ZHANG Bo
[1] Klemens P G 1966 Phys. Rev. 148 845
[2] Ren F et al 2010 Chin. Phys. Lett. 27 068101
[3] Yim W M et al 1973 J. Appl. Phys. 44 292
[4] Prokofyeva T et al 2001 Phys. Rev. B 63 125313
[5] Kuball M et al 2000 Appl. Phys. Lett. 77 1958
[6] Kazan M et al 2006 Diamond Relat. Mater. 15 1169
[7] Song D Y et al 2006 Appl. Phys. Lett. 89 021901
[8] Perlin P et al 1992 Phys. Rev. B 45 83
[9] Davydov V Y et al 1997 J. Appl. Phys. 82 5097
[10] Davydov V Y, Kitaev Y E, Goncharuk I N, Smirnov A N, Graul J, Semchinova O, Uffmann D, Smirnov M B, Mirgorodsky A P and Evarestov R A 1998 Phys. Rev. B 58 12899
[11] Pandit P, Song D Y and Holtz M 2007 J. Appl. Phys. 102 113510
[12] Song D Y, Nikishin S A, Holtz M, Soukhoveev V, Usikov A and Dmitriev V 2007 J. Appl. Phys. 101 053535
[13] Beechem T and Graham S 2008 J. Appl. Phys. 103 093507
[14] Link A, Bitzer K, Limmer W, Sauer R, Kirchner C, Schwegler V, Kamp M, Ebling D G and Benz K W 1999 J. Appl. Phys. 86 6256
[15] Darakchieva V, Paskov P P, Paskova T, Birch J, Tungasmita S and Monemar B 2002 Appl. Phys. Lett. 80 2302
[16] Li Z F, Lu W, Ye H J, Chen Z H, Yuan X Z, Dou H F, Shen S C, Li G and Chua S J 1999 J. Appl. Phys. 86 2691
[17] Barker A S, Jr. 1963 Phys. Rev. 132 1474
[18] Schubert M, Tiwald T E and Herzinger C M 2000 Phys. Rev. B 61 8187
[19] Wagner J M and Bechstedt F 2002 Phys. Rev. B 66 115202
[20] Liu M S, Bursill L A, Prawer S, Nugent K W, Tong Y Z and Zhang G Y 1999 Appl. Phys. Lett. 74 3125
[21] Slack G A and Bartram S F 1975 J. Appl. Phys. 46 89
[22] Wagner J M and Bechstedt F 2000 Appl. Phys. Lett. 77 346
Related articles from Frontiers Journals
[1] ZHANG Cang-Hai, YANG Yi, ZHOU Chang-Jian, SHU Yi, TIAN He, WANG Zhe, XUE Qing-Tang, REN Tian-Ling . Wafer-Scale Flexible Surface Acoustic Wave Devices Based on an AlN/Si Structure[J]. Chin. Phys. Lett., 2013, 30(7): 097701
Viewed
Full text


Abstract