CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Switching Plasmon Resonances by Polarization of the Incident Light in Metamolecules |
LIU Jian-Qiang1**, CHEN Jing2, WANG Dian-Yuan1, ZHOU Yu-Xiu1, CHEN Zhen-Hua3, WANG Ling-Ling3 |
1School of Science, Jiujiang University, Jiujiang 332005 2College of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210046 3School of Physics and Microelectronics, Hunan University, Changsha 410082
|
|
Cite this article: |
LIU Jian-Qiang, CHEN Jing, WANG Dian-Yuan et al 2013 Chin. Phys. Lett. 30 097801 |
|
|
Abstract We numerically demonstrate the modulation of plasmon resonances in a metamolecule composed of metal bars and L-shaped nanoparticles by using the finite difference time domain method. Due to the dependence of electromagnetic coupling on polarization of the incident light, we show that the superradiant and subradiant states can be switched from ON and OFF resonantly. These two resonances are continuously adjustable as the polarization angle of incident wave changes. This feature reveals a possibility of dynamically switching the coupled plasmon resonances of an artificial microstructure and to construct functional metamaterials, which is helpful for nanophotonic devices such as filters and optical switches.
|
|
Received: 15 April 2013
Published: 21 November 2013
|
|
PACS: |
78.67.Bf
|
(Nanocrystals, nanoparticles, and nanoclusters)
|
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
78.20.Bh
|
(Theory, models, and numerical simulation)
|
|
|
|
|
[1] Canfield B K, Kujala S, Kauranen M, Jefimovs K, Vallius T and Turunen J 2005 Appl. Phys. Lett. 86 183109 [2] Yu B H, Zhang D L, Li Y B and Tang Q B 2013 Chin. Phys. B 22 014212 [3] Tao J, Lu Y H, Zheng R S, Lin K Q, Xie Z G, Luo Z F, Li S L, Wang P, Ming H 2008 Chin. Phys. Lett. 25 4459 [4] Aizpurua J, Bryant G W, Richter L J and Garcíade Abajo F J 2005 Phys. Rev. B 71 235420 [5] Chen J, Dong W, Wang Q G, Tang C J, Chen Z, Wang Z L 2012 Chin. Phys. Lett. 29 097303 [6] Rockstuhl C, Lederer F, Etrich C, Zentgraf T, Kuhl J and Giessen H 2006 Opt. Express 14 8827 [7] H Rochholz, N Bocchio and M Kreiter 2007 New J. Phys. 9 53 [8] Hannu H, Jouni M, Janne L, Markku K and Martti K 2010 Opt. Express 18 16601 [9] Yang J, Zhang J S, Wu X F, Gong Q H 2009 Chin. Phys. Lett. 26 067802 [10] Sung J, Hicks E M, Van Duyne R P and Spears K G 2007 J. Phys. Chem. C 111 10368 [11] Hutter E, Fendler J H 2004 Adv. Mater. 16 1685 [12] Liu N, Kaiser S and Giessen H 2008 Adv. Mater. 20 4521 [13] Hentschel M, Saliba M, Vogelgesang R, Giessen H, Alivisatos A P and Liu N 2010 Nano Lett. 10 2721 [14] Prodan E, Radloff C, Halas N J, Nordlander P 2003 Science 302 419 [15] Zhang S, Genov D A, Wang Y, Liu M and Zhang X 2008 Phys. Rev. Lett. 101 047401 [16] Liu N, Langguth L, Weiss T, Kastel J, Fleischhauer M, Pfau T and Giessen H 2009 Nat. Mater. 8 758 [17] Sonnefraud Y, Verellen N, Sobhani H, Vandenbosch G A E, Moshchalkov V V, Dorpe P V, Nordlander P and Maier S A 2010 ACS Nano 4 1664 [18] Miroshnichenko A E, Flach S, Kivshar Y S 2010 Rev. Mod. Phys. 82 2257 [19] Chen J, Shen Q, Chen Z, Wang Q G, Tang C J and Wang Z L 2012 J. Chem. Phys. 136 214703 [20] Papasimakis N and Zheludev N I 2009 Opt. Photon. News 20 22 [21] Taflove A and Hagness S C 2000 Computational Electrodynamics: The Finite-Difference Time-Domain Method 2nd edn (Boston: Artech House) [22] Lumerical FDTD solutions 7.5 http://www.lumerical.com [23] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|